Subscribe to RSS
DOI: 10.1055/a-2010-5457
CAR-T-Zellen zur Behandlung solider Tumoren
CAR T cell therapy for the treatment of solid tumorsDie chimäre Antigenrezeptor (CAR)-T-Zell-Therapie ist eine moderne Krebstherapie, die in Leukämien und Lymphomen beeindruckende Erfolge verzeichnet. In anderen hämatologischen Erkrankungen und speziell in soliden Tumoren muss die Wirksamkeit der Therapie weiter verbessert oder überhaupt erst gezeigt werden. Die Gründe für das schlechtere Ansprechen sind vielfältig, jedoch wird bereits an zahlreichen Ansätzen gearbeitet, diese Schwierigkeiten zu umgehen.
Abstract
The importance of CAR T cell therapy in the treatment of haematological malignancies has grown in the past years, with six CAR T cell products approved by the FDA as of 2023. However, in the treatment of solid tumours, CAR T cell therapy has so far not demonstrated efficacy, with most clinical trials failing to improve patient outcome. This is due to a variety of factors including poor infiltration and survival of the CAR T cell product in solid tumour tissues as well as their immunosuppressive microenvironment. Additionally, selection of target antigens in solid tumours is proving more difficult than in haematological disease, with at times significant on-target off-tumour effects. Therefore, despite its promise, no CAR T cell product has been approved for the treatment of solid tumours yet.
The past decade has seen a steep increase in preclinical studies aiming at circumventing the challenges CAR T cells face in solid tumours. This has led to several innovative solutions targeting each of the four described axes of CAR T cell failure – difficult antigen selection, poor infiltration, a strong immunosuppressive tumour microenvironment and poor persistence of the transferred T cell product – through cellular engineering, ultimately improving CAR T cell treatment of solid tumours preclinically. While it is still not possible to predict how those approaches will fare in clinical trials, there is certainly reason to expect that first break-throughs of CAR T cell therapy in solid tumours might be on the way.
This article summarizes mechanisms leading to CAR T cell failure in solid tumours and the approaches undertaken in engineering CAR T cells to overcome their shortcomings. Preclinical approaches are described and a small outlook is given into which of these approaches are currently being tested in clinical trials.
Publication History
Article published online:
17 August 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Stoiber S, Cadilha BL, Benmebarek MR. et al. Limitations in the design of chimeric antigen receptors for cancer therapy. Cells 2019; 8 DOI: 10.3390/cells8050472.
- 2 Stock S, Schmitt M, Sellner L. Optimizing manufacturing protocols of chimeric antigen receptor t cells for improved anticancer immunotherapy. Int J Mol Sci 2019; 20 DOI: 10.3390/ijms20246223.
- 3 Sengsayadeth S, Savani BN, Oluwole O. et al. Overview of approved CAR-T therapies, ongoing clinical trials, and its impact on clinical practice. EJHaem 2022; 3: 6-10 DOI: 10.1002/jha2.338.
- 4 Maude SL, Laetsch TW, Buechner J. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med 2018; 378: 439-448 DOI: 10.1056/NEJMoa1709866.
- 5 Melenhorst JJ, Chen GM, Wang M. et al. Decade-long leukaemia remissions with persistence of CD4(+) CAR T cells. Nature 2022; 602: 503-509 DOI: 10.1038/s41586–021–04390–6.
- 6 Rohaan MW, Borch TH, van den Berg JH. et al. Tumor-infiltrating lymphocyte therapy or ipilimumab in advanced melanoma. N Engl J Med 2022; 387: 2113-2125 DOI: 10.1056/NEJMoa2210233.
- 7 Hong DS, Van Tine BA, Biswas S. et al. Autologous T cell therapy for MAGE-A4(+) solid cancers in HLA-A*02(+) patients: a phase 1 trial. Nat Med 2023; 29: 104-114 DOI: 10.1038/s41591–022–02128-z.
- 8 Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017; 168: 724-740 DOI: 10.1016/j.cell.2017.01.016.
- 9 Morgan RA, Yang JC, Kitano M. et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther 2010; 18: 843-851 DOI: 10.1038/mt.2010.24.
- 10 Märkl F, Huynh D, Endres S. et al. Utilizing chemokines in cancer immunotherapy. Trends Cancer 2022; 8: 670-682 DOI: 10.1016/j.trecan.2022.04.001.
- 11 Michaelides S, Obeck H, Kechur D. et al. Migratory engineering of t cells for cancer therapy. Vaccines (Basel) 2022; 10 DOI: 10.3390/vaccines10111845.
- 12 Labanieh L, Mackall CL. CAR immune cells: design principles, resistance and the next generation. Nature 2023; 614: 635-648 DOI: 10.1038/s41586–023–05707–3.
- 13 Karches CH, Benmebarek MR, Schmidbauer ML. et al. Bispecific antibodies enable synthetic agonistic receptor-transduced t cells for tumor immunotherapy. Clin Cancer Res 2019; 25: 5890-5900 DOI: 10.1158/1078–0432.ccr-18–3927.
- 14 Stock S, Benmebarek MR, Kluever AK. et al. Chimeric antigen receptor T cells engineered to recognize the P329G-mutated Fc part of effector-silenced tumor antigen-targeting human IgG1 antibodies enable modular targeting of solid tumors. J Immunother Cancer 2022; 10 DOI: 10.1136/jitc-2022–005054.
- 15 Di Stasi A, Tey SK, Dotti G. et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med 2011; 365: 1673-1683 DOI: 10.1056/NEJMoa1106152.
- 16 Becerra CR, Manji GA, Kim DW. et al. Ligand-inducible, prostate stem cell antigen (PSCA)-directed GoCAR-T cells in advanced solid tumors: Preliminary results with cyclophosphamide (Cy)±fludarabine (Flu) lymphodepletion (LD). J Clin Oncol 2019; 37: 2536-2536 DOI: 10.1200/JCO.2019.37.15_suppl.2536.
- 17 Cadilha BL, Benmebarek MR, Dorman K. et al. Combined tumor-directed recruitment and protection from immune suppression enable CAR T cell efficacy in solid tumors. Sci Adv 2021; 7 DOI: 10.1126/sciadv.abi5781.
- 18 Brown CE, Alizadeh D, Starr R. et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med 2016; 375: 2561-2569 DOI: 10.1056/NEJMoa1610497.
- 19 Sharma P, Allison JP. The future of immune checkpoint therapy. Science 2015; 348: 56-61 DOI: 10.1126/science.aaa8172.
- 20 Kagoya Y, Tanaka S, Guo T. et al. A novel chimeric antigen receptor containing a JAK-STAT signaling domain mediates superior antitumor effects. Nat Med 2018; 24: 352-359 DOI: 10.1038/nm.4478.