Synthesis 2023; 55(18): 2926-2942
DOI: 10.1055/a-2011-7073
short review
Special Issue Electrochemical Organic Synthesis

Catalytic Enantioselective Synthesis Enabled by Electrochemistry

a   Coordination Chemistry and Catalysis Group, Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal   URL: https://fenix.tecnico.ulisboa.pt/homepage/ist10897
,
Armando J. L. Pombeiro
a   Coordination Chemistry and Catalysis Group, Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal   URL: https://fenix.tecnico.ulisboa.pt/homepage/ist10897
b   Рeoples’ Friendship University of Russia (RUDN University), Research Institute of Chemistry, Moscow, Russian Federation
› Author Affiliations
This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal, in the form of projects UIDB/00100/2020 and UIDP/00100/2020 of Centro de Química Estrutural and project LA/P/0056/2020 of the Institute of Molecular Sciences. This publication has also been supported by the RUDN University Strategic Academic Leadership Program (recipient A.J.L.P., preparation).


Abstract

Catalytic enantioselective electrochemical synthesis has emerged in recent years as an efficient, clean, sustainable way to obtain chiral, non-racemic molecules. The difficulties in finding reaction conditions that are compatible with the delicate functional groups of many chiral ligands and organocatalysts has hampered the developments in this field. However, the fact that very minute differences in potential can be selected, allows for fine-tuning, so that very high chemoselectivities can be achieved, which is attracting much attention. Although still few in number compared to other areas of knowledge, the existing methods allow a variety of bond-forming reactions to be performed, and very high yields and ees can be achieved. The present review surveys the literature published in the last four years.

1 Introduction

2 Transition-Metal-Catalyzed Reactions

2.1 Alkylation by C–H Bond Functionalization: C(sp3)–C(sp3) Bond Formation

2.2 C(sp3)–C(sp2) Bond Formation

2.2.1 Alkene Functionalization by Cross-Coupling Reactions

2.2.2 Arylation by Cross-Coupling Reactions

2.3 Alkynylation: C(sp3)–C(sp) Bond Formation

2.4 Cross-Coupling Reactions for the Synthesis of Axially Chiral Biaryls

2.5 Cyanofunctionalization

2.6 Miscellaneous

3 Organocatalysis

4 Conclusions



Publication History

Received: 21 December 2022

Accepted after revision: 12 January 2023

Accepted Manuscript online:
12 January 2023

Article published online:
06 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected general reviews:
    • 1a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 1b Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
    • 1c Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 1d Pollok D, Waldvogel SR. Chem. Sci. 2020; 11: 12386
    • 1e Lu J, Wang Y, McCallum T, Fu N. iScience 2020; 23: 101796
    • 1f Zhu C, Ang NW. J, Meyer TH, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
    • 1g Park DI, Jung S, Yoon H, Jin K. Electrochim. Acta 2021; 397: 139271
    • 1h Cheng X, Lei A, Mei T.-S, Xu H.-C, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
    • 1i Verschueren RH, De Borggraeve WM. Molecules 2019; 24: 2122
    • 1j Luca OR. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, Vol. 2. Faisca Phillips AM. M. M. Wiley; Chichester: 2022: 449

      Selected reviews on asymmetric electrochemical synthesis:
    • 2a Lin Q, Li L, Luo S. Chem. Eur. J. 2019; 25: 10033
    • 2b Ghosh M, Shindle VS, Rueping M. Beilstein J. Org. Chem. 2019; 15: 2710
    • 2c Chang X, Zhang Q, Guo C. Angew. Chem. Int. Ed. 2020; 59: 12612
    • 2d Faisca Phillips AM, Pombeiro AJ. L. Org. Biomol. Chem. 2020; 18: 7026
    • 2e Yamamoto K, Kuriyama M, Onomura O. Curr. Opin. Electrochem. 2021; 28: 100714
    • 2f Chakraborty P, Mandal R, Garg N, Sundararaju B. Coord. Chem. Rev. 2021; 444: 214065
    • 3a Huang X, Zhang Q, Lin J, Harms K, Meggers E. Nat. Catal. 2019; 2: 34
    • 3b Huang Y.-Q, Wu Z.-J, Zhu L, Gu Q, Lu X, You S.-L, Mei T.-S. CCS Chem. 2022; 4: 3181
    • 3c Li L, Li Y, Fu N, Zhang L, Luo S. Angew. Chem. Int. Ed. 2020; 59: 14347
  • 4 Blanco DE, Lee B, Modestino MA. Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 17683
  • 5 For a recent review see: Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
  • 6 Hilt G. ChemElectroChem 2020; 7: 395
  • 7 Challener CA. Pharm. Technol. 2022; 46: 24
    • 8a Sequeira CA. C, Santos DM. F. J. Braz. Chem. Soc. 2009; 20: 387
    • 8b Cardoso DS. P, Šljukić B, Santos DM. F, Sequeira CA. C. Org. Process Res. Dev. 2017; 21: 1213
    • 8c Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
    • 9a Rambacher P. US Patent 290773959, 1959
    • 9b Kam T.-S, Lim T.-M, Tan G.-H. J. Chem. Soc., Perkin Trans. 1 2001; 1594
    • 9c Chai D, Genders D, Weinberg N, Zappi G, Bernasconi E, Lee J, Roletto J, Sogli L, Walker D, Martin CR, Menon V, Zelenay P, Zhang H. Org. Process Res. Dev. 2002; 6: 178
    • 9d Shankaraiah N, Pilli RA, Santos LS. Tetrahedron Lett. 2008; 49: 5098
    • 9e Rosen BR, Werner EW, O’Brien AG, Baran PS. J. Am. Chem. Soc. 2014; 136: 5571
    • 9f Ding H, DeRoy PL, Perreault C, Larivee A, Siddiqui A, Caldwell CG, Harran S, Harran PG. Angew. Chem. Int. Ed. 2015; 54: 4818
    • 9g Kawamata Y, Yan M, Liu Z, Bao D.-H, Chen J, Starr JT, Baran PS. J. Am. Chem. Soc. 2017; 139: 7448
    • 9h Lipp A, Selt M, Ferenc D, Schollmeyer D, Waldvogel SR, Opatz T. Org. Lett. 2019; 21: 1828
    • 9i Elinson MN, Vereshchagin A, Ryzhkova YE, Karpenko KA, Ryzhkov FV, Egorov MP. Polycycl. Aromat. Compd. 2022; 42: in press DOI: 10.1080/10406638.2022.2149568.
    • 10a Pastre JC, Browne DL, Ley SV. Chem. Soc. Rev. 2013; 42: 8849
    • 10b Pletcher D, Green RA, Brown RC. Chem. Rev. 2018; 118: 4573
    • 10c Elsherbini M, Wirth T. Acc Chem Res. 2019; 52: 3287
    • 10d Tanbouza N, Ollevier T, Lam K. iScience 2020; 23: 101720
    • 10e Puglisi A, Rossi S, Herbrik F, Medici F, Benaglia M. Green Process. Synth. 2021; 10: 768
    • 10f Baumann M. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles . Faisca Phillips AM. M. M. Wiley; Chichester: 2022: 411
  • 11 Chen H, Simoska O, Lim K, Grattieri M, Yuan M, Dong F, Lee YS, Beaver K, Weliwatte S, Gaffney EM, Minteer SD. Chem. Rev. 2020; 120: 12903
  • 12 Grecchi S, Arnaboldi S, Rizzo S, Mussini PR. Curr. Opin. Electrochem. 2021; 30: 100810
  • 13 For a recent example, see: Santi M, Seitz J, Cicala R, Hardwick T, Ahmed N, Wirth T. Chem. Eur. J. 2019; 25: 16230
  • 14 Zhang Q, Chang X, Peng L, Guo C. Angew. Chem. Int. Ed. 2019; 58: 6999
  • 15 Huo H, Shen X, Wang C, Zhang L, Röse P, Chen L.-A, Harms K, Marsch M, Hilt G, Meggers E. Nature 2014; 515: 100
  • 16 DeLano TJ, Reisman SE. ACS Catal. 2019; 9: 6751
  • 17 Xiong P, Hemming M, Ivlev SI, Meggers E. J. Am. Chem. Soc. 2022; 144: 6964
  • 18 Campbell CD, Rees CW. J. Chem. Soc. C 1969; 742
  • 19 Marken F, Cresswell AJ, Bull SD. Chem. Rec. 2021; 21: 1
  • 20 Zhang Q, Liang K, Guo C. CCS Chem. 2021; 3: 338
    • 21a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 132309
    • 21b Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
  • 22 Gao P.-S, Weng X.-J, Wang Z.-H, Zheng C, Sun B, Chen Z.-H, You S.-L, Mei T.-S. Angew. Chem. Int. Ed. 2020; 59: 15254
  • 24 Wang X, Dai Y, Gong H. Top. Curr. Chem. 2017; 374: 61
  • 25 Chen W.-W, Zhao Q, Xu M.-H, Lin G.-Q. Org. Lett. 2010; 12: 1072
  • 26 Qiu H, Shuai B, Wang Y.-Z, Liu D, Chen Y.-G, Gao P.-S, Ma H.-X, Chen S, Mei T.-S. J. Am. Chem. Soc. 2020; 142: 9872
  • 27 Dhawa U, Tian C, Wdowik T, Oliveira JC. A, Hao J, Ackermann L. Angew. Chem. Int. Ed. 2020; 59: 13451
  • 28 Dhawa U, Wdowik T, Hou X, Yuan B, Oliveira JC. A, Ackermann L. Chem. Sci. 2021; 12: 14182
  • 29 Pollak P, Romeder G, Hagedorn F, Gelbke H. Ullmann’s Encyclopedia of Industrial Chemistry, 5th ed, Vol. A1. Wiley-VCH; Weinheim: 1985
  • 30 Tolman CA, McKinney RJ, Seidel WC, Druliner JD, Stevens WR. Adv. Catal. 1985; 33: 1
  • 31 RajanBabu TV, Casalnuovo AL. J. Am. Chem. Soc. 1992; 114: 6265
  • 32 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
  • 33 Song L, Fu N, Ernst BG, Lee WH, Frederick MO, DiStasio IA, Lin S. Nat. Chem. 2020; 12: 747
  • 34 Fu N, Song L, Liu J, Shen Y, Siu JC, Lin S. J. Am. Chem. Soc. 2019; 141: 14480
  • 35 Zhang G, Fu L, Chen P, Zou J, Liu G. Org. Lett. 2019; 21: 5015
  • 36 Zheng Y.-J, Tice CM. Expert Opin. Drug Discov. 2016; 11: 831
    • 37a Saragi TP. I, Spehr T, Siebert A, Fuhrmann-Lieker T, Salbeck J. Chem. Rev. 2007; 107: 1011
    • 37b Poriel C, Rault-Berthelot J. J. Mater. Chem. C 2017; 5: 3869
  • 38 Wei W, Scheremetjewa A, Ackermann L. Chem. Sci. 2022; 13: 2783
  • 39 Jensen KL, Franke PT, Nielsen LT, Daasbjerg K, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 129
  • 40 Ho X.-H, Mho S.-I, Kang H, Jang H.-Y. Eur. J. Org. Chem. 2010; 4436
  • 41 Fu N, Li L, Yang Q, Luo S. Org. Lett. 2017; 19: 2122
  • 42 Wang Z.-H, Gao P.-S, Wang X, Gao J.-Q, Xu X.-T, He Z, Ma C, Mei T.-S. J. Am. Chem. Soc. 2021; 143: 15599
  • 43 Lu F.-Y, Chen Y.-J, Chen Y, Ding X, Guan Z, He Y.-H. Chem. Commun. 2020; 56: 623
  • 44 Ding X, Dong C.-L, Guan Z, He Y.-H. Angew. Chem. Int. Ed. 2019; 58: 118
  • 45 Xu K, Li W, Zhu S, Zhu T. Angew. Chem. Int. Ed. 2019; 58: 17625
  • 46 Faisca Phillips AM. M. M. In More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles, Vol. 1. Faisca Phillips AM. M. M. Wiley; Chichester: 2022: 381
    • 47a Farooq U, Schäfer S, Shah A.-HA, Freudendahl DM, Wirth T. Synthesis 2010; 1023
    • 47b Rodríguez A, Moran WJ. Synthesis 2012; 44: 1178
  • 48 Gao W.-C, Xiong Z.-Y, Pirhaghani S, Wirth T. Synthesis 2019; 51: 276