Subscribe to RSS
DOI: 10.1055/a-2012-4047
Neue medikamentöse Konzepte bei Patienten mit kolorektalen Karzinomen und Mikrosatelliteninstabilität
Novel Treatment Concepts in Patients with Colorectal Carcinomas and High Microsatellite Instability Supported by: Deutsche Krebshilfe 70114729Zusammenfassung
Etwa 15% aller Patienten mit kolorektalen Karzinomen zeigen eine hochgradige Mikrosatelliteninstabilität (MSI-high) im Tumorgewebe. Bei ca. ⅓ dieser Patienten liegt die Ursache an pathogenen Keimbahnvarianten der Mismatch-Reparaturgene, die zu einem Lynch-Syndrom führen. In Kombination mit klinischen Kriterien, wie den Amsterdam- oder revidierten Bethesda-Kriterien, diente ein MSI-high-Befund bislang vor allem der Identifikation von Risikopatienten. In der modernen Tumortherapie zeigt die Gruppe der MSI-high-Patienten jedoch über nahezu alle Tumorstadien hinweg Alleinstellungsmerkmale hinsichtlich der medikamentösen Tumortherapie. Nach wie vor gilt, dass MSI-high-Patienten im Stadium UICC II keine adjuvante Chemotherapie erhalten sollten. Während bei Patienten mit Fernmetastasen und MSI-high-Status Immuncheckpoint-Inhibitoren bereits in der Erstlinie regelhaft und erfolgreich eingesetzt werden, zeigen neue Daten sowohl bei lokal fortgeschrittenen Kolon- als auch bei Rektumkarzinomen im präoperativen Setting ein tiefes Ansprechen. Gerade für Rektumkarzinompatienten könnte hier ein neues therapeutisches Verfahren ohne neoadjuvante Chemotherapie und möglicherweise sogar ohne operative Versorgung etabliert werden – bei guter Verträglichkeit und Senkung der Morbidität. Demzufolge ist die universelle MSI-Testung sowohl zur Identifikation von Risikopatienten als auch zur Therapieplanung bereits heute unerlässlich.
Abstract
Approximately 15% of patients with colorectal cancer show high microsatellite instability (MSI-high) in their tumour tissue. For one third of these patients, there is a hereditary cause for this finding – that leads to the diagnosis of Lynch Syndrome. In combination with clinical findings such as the Amsterdam or the revised Bethesda criteria, MSI-high status has been used as a tool in identifying patients at risk. Today, MSI-status has gained much more importance, due to its impact on treatment decisions. Patients with UICC II cancers should not receive adjuvant treatment. For patients with distant metastases and MSI-high status, immune checkpoint inhibitors can be given as first line therapy – with tremendous success. Novel data show a deep response for immune checkpoint antibodies in patients with locally advanced colon as well as rectal cancer in a neoadjuvant setting. Especially for patients with MSI-high rectal cancer, there might be a novel therapeutic regimen utilising immune checkpoint inhibitors without neoadjuvant radio-chemotherapy and even without surgery. This could lead to a relevant reduction in morbidity in this patient cohort. In conclusion, universal MSI-testing is essential for identifying patients at risk for Lynch syndrome and for optimal decision making in treatment planning.
Publication History
Received: 19 October 2022
Accepted: 10 January 2023
Article published online:
27 February 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Robert Koch-Institut, Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V.. Krebs in Deutschland für 2017/2018. 13. Ausgabe. Berlin: 2021. Accessed January 20, 2023 at: https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2021/krebs_in_deutschland_2021.pdf?__blob=publicationFile
- 2 Arnold D, Lueza B, Douillard JY. et al. Prognostic and predictive value of primary tumour side in patients with RAS wild-type metastatic colorectal cancer treated with chemotherapy and EGFR directed antibodies in six randomized trials. Ann Oncol 2017; 28: 1713-1729
- 3 Grothey A, Sobrero AF, Shields AF. et al. Duration of Adjuvant Chemotherapy for Stage III Colon Cancer. N Engl J Med 2018; 378: 1177-1188
- 4 Heinemann V, von Weikersthal LF, Decker T. et al. FOLFIRI plus cetuximab versus FOLFIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15: 1065-1075
- 5 Vangala DB, Cauchin E, Balmaña J. et al. Screening and surveillance in hereditary gastrointestinal cancers: Recommendations from the European Society of Digestive Oncology (ESDO) expert discussion at the 20th European Society for Medical Oncology (ESMO)/World Congress on Gastrointestinal Cancer. Eur J Cancer 2018; 104: 91-103
- 6 Hüneburg R, Aretz S, Büttner R. et al. Current recommendations for surveillance, risk reduction and therapy in Lynch syndrome patients. Z Gastroenterol 2019; 57: 1309-1320
- 7 Nakayama Y, Iijima T, Inokuchi T. et al. Clinicopathological features of sporadic MSI colorectal cancer and Lynch syndrome: a single-center retrospective cohort study. Int J Clin Oncol 2021; 26: 1881-1889
- 8 Bohaumilitzky L, Kluck K, Hüneburg R. et al. The Different Immune Profiles of Normal Colonic Mucosa in Cancer-Free Lynch Syndrome Carriers and Lynch Syndrome Colorectal Cancer Patients. Gastroenterology 2022; 162: 907-919.e10
- 9 Battaglin F, Naseem M, Lenz HJ. et al. Microsatellite Instability in Colorectal Cancer: Overview of Its Clinical Significance and Novel Perspectives HHS Public Access. Clin Adv Hematol Oncol 2018; 16: 735-745
- 10 Hutchins G, Southward K, Handley K. et al. Value of mismatch repair, KRAS, and BRAF mutations in predicting recurrence and benefits from chemotherapy in colorectal cancer. J Clin Oncol 2011; 29: 1261-1270
- 11 Gray R, Barnwell J, McConkey C. Quasar Collaborative Group. et al. Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. Lancet 2007; 370: 2020-2029
- 12 Sargent DJ, Shi Q, Yothers G. et al. Prognostic impact of deficient mismatch repair (dMMR) in 7,803 stage II/III colon cancer (CC) patients (pts): A pooled individual pt data analysis of 17 adjuvant trials in the ACCENT database. J Clin Oncol 2014; 32: 3507-3507
- 13 Ribic CM, Sargent DJ, Moore MJ. et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N Engl J Med 2003; 349: 247-257
- 14 Sargent DJ, Marsoni S, Monges G. et al. Defective mismatch repair as a predictive marker for lack of efficacy of fluorouracil-based adjuvant therapy in colon cancer. J Clin Oncol 2010; 28: 3219-3226
- 15 Schulmann K, Koepnick S, Engel C. et al. Adjuvant chemotherapy (ACT) in stage II colon cancer (CC) in patients with Lynch syndrome. J Clin Oncol 2012; 30: 3550
- 16 Schmiegel W, Buchberger B, Follmann M. et al. S3-Leitlinie – Kolorektales Karzinom. Z Gastroenterol 2017; 55: 1344-1498
- 17 Roth AD, Delorenzi M, Tejpar S. et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst 2012; 104: 1635-1646
- 18 Gavin PG, Colangelo LH, Fumagalli D. et al. Mutation profiling and microsatellite instability in stage II and III colon cancer: An assessment of their prognostic and oxaliplatin predictive value. Clin Cancer Res 2012; 18: 6531-6541
- 19 Taieb J, Shi Q, Pederson L. et al. Prognosis of microsatellite instability and/or mismatch repair deficiency stage III colon cancer patients after disease recurrence following adjuvant treatment: Results of an ACCENT pooled analysis of seven studies. Ann Oncol 2019; 30: 1466-1471
- 20 Zaanan A, Shi Q, Taieb J. et al. Role of deficient DNA mismatch repair status in patients with stage III colon cancer treated with FOLFOX adjuvant chemotherapy a pooled analysis from 2 randomized clinical trials. JAMA Oncol 2018; 4: 379-383
- 21 Sinicrope FA, Mahoney MR, Smyrk TC. et al. Prognostic impact of deficient DNA mismatch repair in patients with stage III colon cancer from a randomized trial of FOLFOX-based adjuvant chemotherapy. J Clin Oncol 2013; 31: 3664-3672
- 22 Jin Z, Sinicrope FA. Prognostic and predictive values of mismatch repair deficiency in non-metastatic colorectal cancer. Cancers (Basel) 2021; 13: 1-16
- 23 André T, de Gramont A, Vernerey D. et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: Updated 10-year survival and outcomes according to BRAF mutation and mismatch repair status of the MOSAIC study. J Clin Oncol 2015; 33: 4176-4187
- 24 Tomasello G, Ghidini M, Galassi B. et al. Survival benefit with adjuvant chemotherapy in stage III microsatellite-high/deficient mismatch repair colon cancer: a systematic review and meta-analysis. Sci Rep 2022; 12: 1055
- 25 Cohen R, Taieb J, Fiskum J. et al. Microsatellite Instability in Patients With Stage III Colon Cancer Receiving Fluoropyrimidine With or Without Oxaliplatin: An ACCENT Pooled Analysis of 12 Adjuvant Trials. J Clin Oncol 2020; 39: 642-651
- 26 Tougeron D, Mouillet G, Trouilloud I. et al. Efficacy of adjuvant chemotherapy in colon cancer with microsatellite instability: A large multicenter AGEO study. J Natl Cancer Inst 2016; 108: djv438
- 27 Sinicrope FA, Foster NR, Thibodeau SN. et al. DNA mismatch repair status and colon cancer recurrence and survival in clinical trials of 5-fluorouracil-based adjuvant therapy. J Natl Cancer Inst 2011; 103: 863-875
- 28 Steinke V, Engel C, Büttner R. et al. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch Arztebl Int 2013; 110: 32-38
- 29 Weisenberger DJ, Siegmund KD, Campan M. et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 787-793
- 30 Bläker H, Haupt S, Morak M. et al. Age-dependent performance of BRAF mutation testing in Lynch syndrome diagnostics. Int J Cancer 2020; 147: 2801-2810
- 31 Boland CR, Goel A. Microsatellite Instability in Colorectal Cancer. Gastroenterology 2010; 138
- 32 Schwitalle Y, Kloor M, Eiermann S. et al. Immune Response Against Frameshift-Induced Neopeptides in HNPCC Patients and Healthy HNPCC Mutation Carriers. Gastroenterology 2008; 134: 988-997
- 33 Koopman M, Kortman GAM, Mekenkamp L. et al. Deficient mismatch repair system in patients with sporadic advanced colorectal cancer. Br J Cancer 2009; 100: 266-273
- 34 Le DT, Uram JN, Wang H. et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015; 372: 2509-2520
- 35 Llosa NJ, Cruise M, Tam A. et al. The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 2015; 5: 43-51
- 36 Le DT, Kim TW, Van Cutsem E. et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J Clin Oncol 2020; 38: 11-19
- 37 Overman MJ, McDermott R, Leach JL. et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18: 1182-1191
- 38 Overman MJ, Lonardi S, Wong KYM. et al. Durable Clinical Benefit With Nivolumab Plus Ipilimumab in DNA Mismatch Repair-Deficient/Microsatellite Instability-High Metastatic Colorectal Cancer. J Clin Oncol 2018; 36: 773-779
- 39 André T, Lonardi S, Wong KYM. et al. Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann Oncol 2022; 33: 1052-1060
- 40 André T, Shiu KK, Kim TW. et al. Pembrolizumab in Microsatellite-Instability–High Advanced Colorectal Cancer. N Engl J Med 2020; 383: 2207-2218
- 41 Diaz jr. LA, Shiu KK, Kim TW. et al. Pembrolizumab versus chemotherapy for microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer (KEYNOTE-177): final analysis of a randomised, open-label, phase 3 study. Lancet Oncol 2022; 23: 659-670
- 42 Lenz HJ, Van Cutsem E, Limon ML. et al. First-Line Nivolumab Plus Low-Dose Ipilimumab for Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: The Phase II CheckMate 142 Study. J Clin Oncol 2022; 40: 161-170
- 43 Cercek A, Lumish M, Sinopoli J. et al. PD-1 Blockade in Mismatch Repair–Deficient, Locally Advanced Rectal Cancer. N Engl J Med 2022; 386: 2363-2376
- 44 Chalabi M, Verschoor VL, van den Berg J. et al. Neoadjuvant immune checkpoint inhibition in locally advanced MMR-deficient colon cancer: The NICHE-2 study. Ann Oncol 2022; 33 (Suppl. 07) S808-S869
- 45 Coutzac C, Bibeau F, Ben Abdelghani M. et al. Immunotherapy in MSI/dMMR tumors in the perioperative setting: The IMHOTEP trial. Dig Liver Dis 2022; 54: 1335-1341
- 46 Lau D, Kalaitzaki E, Church DN. et al. Rationale and design of the POLEM trial: Avelumab plus fluoropyrimidine-based chemotherapy as adjuvant treatment for stage III mismatch repair deficient or POLE exonuclease domain mutant colon cancer: A phase III randomised study. ESMO Open 2020; 5: e000638
- 47 Sinicrope FA, Ou FS, Zemla T. et al. Randomized trial of standard chemotherapy alone or combined with atezolizumab as adjuvant therapy for patients with stage III colon cancer and deficient mismatch repair (ATOMIC, Alliance A021502). J Clin Oncol 2019; 37: e15169-e15169
- 48 Seppälä TT, Latchford A, Negoi I. et al. European guidelines from the EHTG and ESCP for Lynch syndrome: an updated third edition of the Mallorca guidelines based on gene and gender. Br J Surg 2021; 108: 484-498
- 49 Monahan KJ, Bradshaw N, Dolwani S. et al. Guidelines for the management of hereditary colorectal cancer from the British Society of Gastroenterology (BSG)/Association of Coloproctology of Great Britain and Ireland (ACPGBI)/United Kingdom Cancer Genetics Group (UKCGG). Gut 2020; 69: 411-444
- 50 Gupta S, Weiss JM, Burke CA. et al. Genetic/Familial High-Risk Assessment: Colorectal. NCCN Guidelines Version 1.2022. J Natl Compr Canc Netw 2021; 19: 1122-1132