Subscribe to RSS
DOI: 10.1055/a-2012-4835
Rhodium(III) Iodide Catalyzed Carboamination of Alkynes through C–N Bond Activation
National Science Foundation of China (Nos. 82122063, 81991522, and 81973232); Shandong Science Fund for Distinguished Young Scholars (ZR2020JQ32); Fundamental Research Funds for the Central Universities (202041003); and Marine S&T Fund of Shandong Province for Pilot NLMST (2022QNLM030003-2).
Abstract
Here, we report a RhI3-catalyzed intramolecular carboamination reaction to access polysubstituted indoles. The protocol features a broad substrate scope (>20 examples), good functional-group compatibility, and a low catalyst loading (5 mol% Rh). Good to excellent yields (up to 98%) were obtained. An unprecedented C–N bond-cleavage mode via a six-membered transition state σ-bond metathesis mechanism was proposed based on control experiments. A series of C3-allylated indole derivatives were accessed, proving that the system provides an alternative catalytic route to polysubstituted indoles.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2012-4835.
- Supporting Information
Publication History
Received: 21 November 2022
Accepted after revision: 13 January 2023
Accepted Manuscript online:
13 January 2023
Article published online:
09 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Makarieva TN, Ilyin SG, Stonik VA, Lyssenko KA, Denisenko VA. Tetrahedron Lett. 1999; 40: 1591
- 1b Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
- 1c Hamid H A, Ramli AN. M, Yusoff MM. Front. Pharmacol. 2017; 8: 96
- 1d Zhang Y, Li X, Xu T. Org. Biomol. Chem. 2021; 19: 9138
- 1e Yu H, Li X, Jia Y, Zhang D, Xu T. Tetrahedron 2021; 91: 132240
- 2a Cacchi S, Fabrizi G, Pace P. J. Org. Chem. 1998; 63: 1001
- 2b Cacchi S. J. Organomet. Chem. 1999; 576: 42
- 3a Kamijo S, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 11940
- 3b Shimada T, Nakamura I, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 10546 ; and references cited therein
- 4 For a stoichiometric carboamination using a Cr complex, see: Rudler H, Parlier A, Bezennine-Lafollée S, Vaissermann J. Eur. J. Org. Chem. 1999; 2825
- 5a Zhao F, Zhang D, Nian Y, Zhang L, Yang W, Liu H. Org. Lett. 2014; 16: 5124
- 5b Zeng X, Kinjo R, Donnadieu B, Bertrand G. Angew. Chem. Int. Ed. 2010; 49: 942
- 5c Nakamura I, Yamagishi U, Song D, Konta S, Yamamoto T. Angew. Chem. Int. Ed. 2007; 46: 2284
- 5d Chong E, Blum SA. J. Am. Chem. Soc. 2015; 137: 10144
- 5e Nakamura I, Sato Y, Konta S, Terada M. Tetrahedron Lett. 2009; 50: 2075
- 5f Patra SR, Sangma SW, Padhy AK, Bhunia S. J. Org. Chem. 2022; 87: 9714
- 5g Chiang P.-Y, Lin Y.-C, Wang Y, Liu Y.-H. Organometallics 2010; 29: 5776
- 5h Wu C.-Y, Hu M, Liu Y, Song R.-J, Lei Y, Tang B.-X, Li R.-J, Li J.-H. Chem. Commun. 2012; 48: 3197
- 5i Rong M.-G, Qin T.-Z, Zi W. Org. Lett. 2019; 21: 5421
- 5j Badart MP, Hawkins BC. Synthesis 2021; 53: 1683
- 6 For a benzofuran synthesis by a Rh-mediated enyne cycloisomerization, see: Sakiyama N, Noguchi K, Tanaka K. Angew. Chem. Int. Ed. 2012; 51: 5976
- 7 For a representative review, see: Escoubet S, Gastaldi S, Bertrand M. Eur. J. Org. Chem. 2005; 2005: 3855
- 8 CCDC 2215689 contains the supplementary crystallographic data for compound 7. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 9 Zhang J, Wang X, Xu T. Nat. Commun. 2021; 12: 3022
- 10 Wang Y, Qiu B, Hu L, Lu G, Xu T. ACS Catal. 2021; 11: 9136
- 11 Qiu B, Li X.-T, Zhang J.-Y, Zhan J.-L, Huang S.-P, Xu T. Org. Lett. 2018; 20: 7689
- 12 Wang X, Liu F, Xu T. Chin. Chem. Lett. 2023; 34: 107624
- 13a Zhang Y, Shen S, Fang H, Xu T. Org. Lett. 2020; 22: 1244
- 13b Sun T, Zhang Y, Qiu B, Wang Y, Qin Y, Dong G, Xu T. Angew. Chem. Int. Ed. 2018; 57: 2859
- 14 1-Methyl-3-(2-methylprop-2-en-1-yl)-2-phenyl-1H-indole (2a); Typical Procedure In a nitrogen-filled glove box, an oven-dried 4 mL vial was charged with amine 1a (23.7 mg, 0.091 mmol) and RhI3 (2.3 mg, 0.005 mmol). Toluene (1 mL) was added, and the mixture was stirred at rt for 5 minutes until the solids fully dissolved. The vial was then sealed with a PTFE-lined cap and the mixture was stirred for 12 h on a pie-block preheated to 120 °C. The mixture was then directly filtered through Celite and silica gel, which were washed with EtOAc (20 mL). The solvent was removed under reduced pressure, and the crude residue was purified by flash column chromatography (silica gel) to give a yellow oil; yield: 22.9 mg (98%). IR (FTIR): 3056, 2907, 1647, 1466, 1361, 1014, 890 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.64 (d, J = 7.8 Hz, 1 H), 7.53–7.47 (m, 2 H), 7.47–7.40 (m, 3 H), 7.37 (d, J = 8.2 Hz, 1 H), 7.30–7.24 (m, 1 H), 7.15 (ddd, J = 7.9, 6.9, 1.0 Hz, 1 H), 4.78 (s, 1 H), 4.70 (s, 1 H), 3.64 (s, 3 H), 3.40 (s, 2 H), 1.73 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 145.5, 138.7, 137.4, 132.1, 130.6, 128.4, 128.2, 128.1, 121.7, 119.7, 119.3, 110.8, 110.8, 109.4, 33.4, 31.1, 22.9. HRMS (ESI): m/z [M + Na]+ calcd for C19H19NNa: 284.1410; found: 284.1409.
For a review on recent developments of indole-containing antiviral agents, see:
For representative reports on carboaminations to access 2,3-difunctionalized indoles through a N to C3 translocation, see (Pd):
(Au):
(Pt):
(Ru):
(Re):
(Ir):