Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(12): 1855-1862
DOI: 10.1055/a-2012-5078
DOI: 10.1055/a-2012-5078
paper
Special Issue dedicated to Prof. Alain Krief
Visible-Light-Mediated Germanylation of Aryl Fluorides: Synthetic and Mechanistic Insights
The Centre National de la Recherche Scientifique (CNRS), the Université Paul Sabatier (UPS), and the Agence Nationale de la Recherche (ANR – 220087, MLC-PhotoPhos) are gratefully acknowledged for financial support of this work.

Dedicated to Prof. Alain Krief on the occasion of his 80th birthday.
Abstract
We describe herein a metal-free synthesis of aryltriphenylgermanes from the reaction of triphenylgermane with fluoro(hetero)arenes in the presence of a base under blue light irradiation. The reaction proceeds under mild conditions and tolerates a few functionalities. The scope and limitations of this unprecedented approach are analyzed based on preliminary mechanistic studies.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2012-5078.
- Supporting Information
- CIF File
Publication History
Received: 28 November 2022
Accepted after revision: 13 January 2023
Accepted Manuscript online:
13 January 2023
Article published online:
13 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Lukevics E, Ignatovich L. The Chemistry of Organic Germanium, Tin and Lead Compounds, Vol. 2. Rappoport Z. Wiley; New York: 2002: 1653
- 1b Fricke C, Schoenebeck F. Acc. Chem. Res. 2020; 53: 2715
- 2a Dahiya A, Fricke C, Schoenebeck F. J. Am. Chem. Soc. 2020; 142: 7754
- 2b Fricke C, Deckers K, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 18717
- 2c Sherborne GJ, Gevondian AG, Funes-Ardoiz I, Dahiya A, Fricke C, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 15543
- 2d Fricke C, Sherborne GJ, Funes-Ardoiz I, Senol E, Guven S, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 17788
- 3 Langle S, David-Quillot F, Balland A, Abarbri M, Duchene A. J. Organomet. Chem. 2003; 671: 113
- 4a Azarian D, Dua SS, Eaborn C, Walton DR. M. J. Organomet. Chem. 1976; 117: C55
- 4b Lesbani A, Kondo H, Yabusaki Y, Nakai M, Yamanoi Y, Nishihara H. Chem. Eur. J. 2010; 16: 13519
- 4c Komami N, Matsuoka K, Yoshino T, Matsunaga S. Synthesis 2018; 50: 2067
- 4d Nakamura T, Kinoshita H, Shinokubo H, Oshima K. Org. Lett. 2002; 4: 3165
- 5a Elsby MR, Liu J, Zhu S, Hu L, Huang G, Johnson SA. Organometallics 2019; 38: 436
- 5b Chen C, Guan M, Zhang J, Wen Z, Zhao Y. Org. Lett. 2015; 17: 3646
- 5c Kanyiva KS, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
- 5d Modak A, Patra T, Chowdhury R, Raul S, Maiti D. Organometallics 2017; 36: 2418
- 6a Selmani A, Gevondian AG, Schoenebeck F. Org. Lett. 2020; 22: 4802
- 6b Selmani A, Schoenebeck F. Org. Lett. 2021; 23: 4779
- 7a Mochida K, Matsushige N. J. Organomet. Chem. 1982; 229: 11
- 7b Sakamoto K, Nagashima Y, Wang C, Miyamoto K, Tanaka K, Uchiyama M. J. Am. Chem. Soc. 2021; 143: 5629
- 8a Bunnett JF. Acc. Chem. Res. 1978; 11: 413
- 8b Savéant J.-M. Acc. Chem. Res. 1980; 13: 323
- 8c Rossi RA, de Rossi RH. Aromatic Substitution by the SRN1 Mechanism, ACS Monograph 178. American Chemical Society; Washington DC: 1983
- 8d Savéant J.-M. Tetrahedron 1994; 50: 10117
- 9 Kiplinger JL, Richmond TG, Osterberg CE. Chem. Rev. 1994; 94: 373
- 10 For a selected review, see: Glaser F, Kerzig C, Wenger OS. Angew. Chem. Int. Ed. 2020; 59: 10266
- 11 Wu S, Kaur J, Karl TA, Tian X, Barham JP. Angew. Chem. Int. Ed. 2022; 61: e202107811
- 12 Because multiple singlet and triplet states are energetically available, others photochemical processes are also possible.
For selected reviews, see:
For key references, see: