Subscribe to RSS
DOI: 10.1055/a-2012-5187
Aza-Wacker Cyclization Toward the Bridged Core of FR901483
Financial support from the National Natural Science Foundation of China (22171281 and 22271194) and the Science and Technology Commission of Shanghai Municipality (20XD1404700) is greatly appreciated.
Abstract
A nine-step synthetic route to access the tricyclic core of FR901483 is reported, featuring a key aza-Wacker cyclization step to construct an α-tertiary amine (ATA) in the bridged structure. The aza-Wacker protocol can tolerate both exocyclic and endocyclic double bonds, providing viable access to various bridged bicyclic rings bearing an ATA (e.g., 6-azabicyclo[3.2.1]octane, 7-azabicyclo[3.3.1]nonane, and 7-azabicyclo[4.2.1]nonane) in good to excellent yields. The synthetic studies presented herein enable structural derivatization of FR901483 to further exploit its compelling biological activities.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2012-5187.
- Supporting Information
Publication History
Received: 24 December 2022
Accepted after revision: 13 January 2023
Accepted Manuscript online:
13 January 2023
Article published online:
06 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hager A, Vrielink N, Hager D, Lefranc J, Trauner D. Nat. Prod. Rep. 2016; 33: 491
- 2 Alvandi F, Kwitkowski VE, Ko C.-W, Rothmann MD, Ricci S, Saber H, Ghosh D, Brown J, Pfeiler E, Chikhale E, Grillo J, Bullock J, Kane R, Kaminskas E, Farrell AT, Pazdur R. Oncologist 2014; 19: 94
- 3a Jeon H. Asian J. Org. Chem. 2021; 10: 3052
- 3b Pérard-Viret J, Quteishat L, Alsalim R, Royer J, Dumas F. Cephalotaxus Alkaloids. In The Alkaloids: Chemistry and Biology, Vol. 78. Knölker H.-J. Academic Press; New York: 2017: 205-352
- 4 Blackman AJ, Hambley TW, Picker K, Taylor WC, Thirasasana N. Tetrahedron Lett. 1987; 28: 5561
- 5a Ruan Z, Zhu L, Zheng K, Hong R. Tetrahedron Lett. 2021; 67: e152880
- 5b Rohini R, Reddy MP, Shanker K, Hu A, Ravinder V. Eur. J. Med. Chem. 2010; 45: 1200
- 6a Cimino G, De Stefano S, Scognamiglio G, Sodano G, Trivellone E. Bull. Soc. Chim. Belg. 1986; 95: 783
- 6b Cimino G, Mattia CA, Mazzarella L, Puliti R, Scognamiglio G, Spinella A, Trivellone E. Tetrahedron 1989; 45: 3863
- 7a Higo T, Ukegawa T, Yokoshima S, Fukuyama T. Angew. Chem. Int. Ed. 2015; 54: 7367
- 7b Becker MH, Chua P, Downham R, Douglas CJ, Garg NK, Hiebert S, Jaroch S, Matsuoka RT, Middleton JA, Ng FW, Overman LE. J. Am. Chem. Soc. 2007; 129: 11987
- 7c Garg NK, Hiebert S, Overman LE. Angew. Chem. Int. Ed. 2006; 45: 2912
- 8a Baldwin JE, Whitehead RC. Tetrahedron Lett. 1992; 33: 2059
- 8b Delpech B. The Saraine Alkaloids. In The Alkaloids: Chemistry and Biology, Vol. 73. Knölker H.-J. Academic Press; New York: 2014: 223-329
- 8c Tang Y, Zhu L, Hong R. Tetrahedron Chem 2022; 3: e100025
- 9a Ruan Z, Wang M, Yang C, Zhu L, Su Z, Hong R. JACS Au 2022; 2: 793
- 9b Liu Y, Ruan Z, Wang Y, Huang S.-H, Hong R. Tetrahedron Lett. 2019; 75: 1767
- 9c Zhai L, Tian X, Wang C, Cui Q, Li W, Huang S.-H, Yu Z.-X, Hong R. Angew. Chem. Int. Ed. 2017; 56: 11599
- 9d Ouyang J, Mi X, Wang Y, Hong R. Synlett 2017; 28: 762
- 9e Huang S.-H, Tian X, Mi X, Wang Y, Hong R. Tetrahedron Lett. 2015; 56: 6656
- 9f Liu H, Yu J, Li X, Yan R, Xiao J.-C, Hong R. Org. Lett. 2015; 17: 4444
- 9g Ouyang J, Yan R, Mi X, Hong R. Angew. Chem. Int. Ed. 2015; 54: 10940
- 10 Sakamoto K, Tsujii E, Abe F, Nakanishi T, Yamashita M, Shigematsu N, Izumi S, Okuhara M. J. Antibiot. 1996; 49: 37
- 11 Mann J. Nat. Prod. Rep. 2001; 18: 417
- 12 For a recent review, see: Ruan Z.-W, Li C, Shen D.-F, Huang S.-H, Hong R. Synthesis 2019; 51: 2237
- 13a Reich D, Trowbridge A, Gaunt MJ. Angew. Chem. Int. Ed. 2020; 59: 2256
- 13b Huo H.-H, Xia X.-E, Zhang H.-K, Huang P.-Q. J. Org. Chem. 2013; 78: 455
- 13c Ma A.-J, Tu Y.-Q, Peng J.-B, Dou Q.-Y, Hou S.-H, Zhang F.-M, Wang S.-H. Org. Lett. 2012; 14: 3604
- 13d Ieda S, Asoh Y, Fujimoto T, Kitaoka H, Kan T, Fukuyama T. Heterocycles 2009; 79: 721
- 13e Kan T, Fujimoto T, Ieda S, Asoh Y, Kitaoka H, Fukuyama T. Org. Lett. 2004; 6: 2729
- 13f Ousmer M, Braun NA, Ciufolini MA. Org. Lett. 2001; 3: 765
- 13g Ousmer M, Braun NA, Perrin M, Ciufolini MA. J. Am. Chem. Soc. 2001; 123: 7534
- 13h Maeng JH, Funk RL. Org. Lett. 2001; 3: 1125
- 13i Scheffler G, Seike H, Sorensen EJ. Angew. Chem. Int. Ed. 2000; 39: 4593
- 13j Snider BB, Lin H. J. Am. Chem. Soc. 1999; 121: 7778
- 14a Huo H.-H, Zhang H.-K, Xia X.-E, Huang P.-Q. Org. Lett. 2012; 14: 4834
- 14b Ieda S, Masuda A, Kariyama M, Wakimoto T, Asakawa T, Fukuyama T, Kan T. Heterocycles 2012; 86: 1071
- 14c Ieda S, Kan T, Fukuyama T. Tetrahedron Lett. 2010; 51: 4027
- 14d Carson CA, Kerr MA. Org. Lett. 2009; 11: 777
- 14e Hong S.-P, Brummond KM. J. Org. Chem. 2005; 70: 907
- 14f Lu J.-L, Brummond KM. Org. Lett. 2001; 3: 1347
- 15a Li B.-L, Gao W.-Y, Li H, Zhang S.-Q, Han X.-Q, Lu J, Liang R.-X, Hong X, Jia Y.-X. Chin. J. Chem. 2019; 37: 63
- 15b Diaba F, Martínez-Laporta A, Bonjoch J. J. Org. Chem. 2014; 79: 9365
- 15c Perreault S, Rovis T. Synthesis 2013; 45: 719
- 15d Seike H, Sorensen EJ. Synlett 2008; 695
- 15e Diaba F, Ricou E, Solé D, Teixidó E, Valls N, Bonjoch J. ARKIVOC 2007; (iv): 320
- 15f Asari A, Angelow P, Auty JM, Hayes CJ. Tetrahedron Lett. 2007; 48: 2631
- 15g Simila ST. M, Martin SF. J. Org. Chem. 2007; 72: 5342
- 15h Kaden S, Reissing HU. Org. Lett. 2006; 8: 4763
- 15i Simila ST. M, Reichelt A, Martin SF. Tetrahedron Lett. 2006; 47: 2933
- 15j Kropf JE, Meigh IC, Bebbington MW. P, Weinreb SM. J. Org. Chem. 2006; 71: 2046
- 15k Bonjoch J, Diaba F, Puigbo G, Peidro E, Sole D. Tetrahedron Lett. 2003; 44: 8387
- 15l Wardrop DJ, Zhang W.-M. Org. Lett. 2001; 3: 2353
- 15m Suzuki H, Yamazaki N, Kibayashi C. Tetrahedron Lett. 2001; 42: 3013
- 16 Schneider G, Neidhart W, Giller T, Schmid G. Angew. Chem. Int. Ed. 1999; 38: 2894
- 17 Thomas A, Nagamalla S, Sathyamoorthi S. Chem. Sci. 2020; 11: 8073
- 18a Xie C, Luo J, Zhang Y, Huang S.-H, Zhu L, Hong R. Org. Lett. 2018; 20: 2386
- 18b Luo J, Xie C, Zhang Y, Huang S.-H, Zhu L, Hong R. Tetrahedron 2018; 74: 5791
- 19 Nishkimi Y, Iimori T, Sodeoka M, Shibasaki M. J. Org. Chem. 1989; 54: 3354
- 20 Keck GE, McHardy SF, Wager TT. Tetrahedron Lett. 1995; 36: 7419
- 21 See the Supporting Information for details
- 22 Davis FA, Chen B.-C. Chem. Rev. 1992; 92: 919
- 23 Jing P, Yang Z, Zhao C.-G, Zheng H.-Ji, Fang B.-W, Xie X.-G, She X.-G. Chem. Eur. J. 2012; 18: 6729
- 24 Wagnières O, Xu Z.-R, Wang Q, Zhu J.-P. J. Am. Chem. Soc. 2014; 136: 15102
- 25 Nakazawa N, Tagami K, Iimori H, Sano S, Ishikawa T, Nagao Y. Hetereocycles 2001; 55: 2157
- 26 Müller TE, Hultzsch KC, Yus M, Foubelo F, Tada M. Chem. Rev. 2008; 108: 3795
- 27 Yamamoto Y, Fujikawa R, Umemoto T, Miyaura N. Tetrahedron 2004; 60: 10695
- 28a Wang L, Zhang Z, Han H, Liu X, Bu Z, Wang Q. Chin. J. Org. Chem. 2021; 41: 12
- 28b Wu T, Tang W.-J. Chem. Eur. J. 2021; 27: 3944
- 29 Zhai L, Tang Y, Zhang Y, Huang S.-H, Zhu L, Hong R. Chem. Rec. 2022; 22: e202100197
- 30 Allin SM, Duffy LJ, Towler JM. R, Page PC. B, Elsegood MR. J, Saha B. Tetrahedron 2009; 65: 10230
For reviews on the synthesis of cephalotaxine, see:
For the total synthesis of FR901483, see:
For the formal synthesis of FR901483, see:
For the skeleton synthesis of FR901483, see:
For recent reviews on the bridged ring systems, see: