Subscribe to RSS
DOI: 10.1055/a-2013-9333
New Demethylated Derivatives of Carolacton and Structure–Activity Relationship (SAR) Studies on Their Biofilm Inhibitory Properties
This work has been carried out as an integral part of the Biofabrication for NIFE Initiative, which is financially supported by the Niedersächsisches Ministerium für Wissenschaft und Kultur (MWK, Lower Saxony Ministry of Science and Culture) and the Volkswagen Foundation.
Abstract
The total synthesis of a series of new carolacton derivatives that mainly lack selected methyl substituents along the polyketide backbone is reported. Their inhibitory activity towards bacterial biofilms revealed that selective removal of the methyl group at C10 does not have a major effect on biological activity, whereas additional removal of the methyl group at C14 in carolacton results in a large decrease in antibacterial activity. A key new feature of this work is the replacement of the Nozaki–Hiyama–Kishi (NHK) vinylation with a titanium-mediated protocol for the fusion of the two main fragments.
Key words
antibiotics - biofilms - carolacton - Nozaki–Hiyama–Kishi reaction - polyketides - structure–activity relationship studies - total synthesisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2013-9333.
- Supporting Information
Publication History
Received: 10 December 2022
Accepted after revision: 16 January 2023
Accepted Manuscript online:
16 January 2023
Article published online:
24 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Jansen R, Irschik H, Huch V, Schummer D, Steinmetz H, Bock M, Schmidt T, Kirschning A, Müller R. Eur. J. Org. Chem. 2010; 1284
- 2 Kunze B, Reck M, Dötsch A, Lemme A, Schummer D, Irschik H, Steinmetz H, Wagner-Döbler I. BMC Microbiol. 2010; 10: 199
- 3a Reck M, Rutz K, Kunze B, Tomasch J, Surapaneni SK, Schulz S, Wagner-Döbler I. J. Bacteriol. 2011; 193: 5692
- 3b Apel C, Barg A, Rheinberg A, Conrads G, Wagner-Döbler I. Dent. Mater. 2013; 29: 1188
- 3c Donner J, Reck M, Bunk B, Jarek M, App C, Meier-Kolthoff J, Overmann J, Müller R, Kirschning A, Wagner-Döbler I. mSphere 2017; 2: e00375-17
- 4 Donner J, Reck M, Bergmann S, Kirschning A, Müller R, Wagner-Döbler I. Sci. Rep. 2016; 6: 29677
- 5a Schmidt T, Kirschning A. Angew. Chem. Int. Ed. 2012; 51: 1063
- 5b Hallside MS, Brzozowski RS, Wuest WM, Phillips AJ. Org. Lett. 2014; 16: 1148
- 5c Kuilya TK, Goswami RK. Org. Lett. 2017; 19: 2366
- 6 Stumpp N, Premnath P, Schmidt T, Ammermann J, Dräger G, Reck M, Jansen R, Stiesch M, Wagner-Döbler I, Kirschning A. Org. Biomol. Chem. 2015; 13: 5765
- 7 Borzilleri RM, Zheng X, Schmidt RJ, Johnson JA, Kim S.-H, DiMarco JD, Fairchild CR, Gougoutas JZ, Lee FY. F, Long BH, Vite GD. J. Am. Chem. Soc. 2000; 122: 8890
- 8 Hügel HM, Smith AT, Rizzacasa MA. Org. Biomol. Chem. 2016; 14: 11301
- 9 Ammermann J, Schmidt T, Donner J, Reck M, Wagner-Döbler I, Kirschning A. Org. Biomol. Chem. 2017; 15: 8553
- 10 Solinski AE, Koval AB, Brzozowski RS, Morrison KR, Fraboni AJ, Carson CE, Eshraghi AR, Zhou G, Quivey RG, Voelz VA, Buttaro BA, Wuest WM. J. Am. Chem. Soc. 2017; 139: 7188
- 11 Fu C, Sikandar A, Donner J, Zaburannyi N, Herrmann J, Reck M, Wagner-Döbler I, Koehnke J, Müller R. Nat. Commun. 2017; 8: 1529
- 12 Zhou J, Fu GC. J. Am. Chem. Soc. 2003; 125: 14726
- 13 Geist E, Kirschning A, Schmidt T. Nat. Prod. Rep. 2014; 31: 441
- 14 Ley SV, Diez E, Dixon DJ, Guy RT, Michel P, Nattrass GL, Sheppard TD. Org. Biomol. Chem. 2004; 2: 3608
- 15a Gribble G, Joyner HH, Switzer FL. Synth. Commun. 1992; 22: 2997
- 15b Coleman RS, Lu X, Modolo I. J. Am. Chem. Soc. 2007; 129: 3826
- 16 Review: Marshall JA. J. Org. Chem. 2007; 72: 8153
- 17a Marshall JA, Grant CM. J. Org. Chem. 1999; 64: 696
- 17b Marshall JA, Chobanian HR. J. Org. Chem. 2000; 65: 8357
- 18 Takano S, Akiyama M, Sato S, Ogasawara K. Chem. Lett. 1983; 1593
- 19 Duthaler RO, Herold P, Wyler-Helfer S, Riediker M. Helv. Chim. Acta 1990; 73: 659
- 20 Duthaler RO, Herold P, Lottenbach W, Oertle K, Riediker M. Angew. Chem. Int. Ed. Engl. 1989; 28: 495
- 21 Holmquist CR, Roskamp EJ. J. Org. Chem. 1989; 54: 3258
- 22 Corey EJ, Bakshi RK, Shibata S. J. Am. Chem. Soc. 1987; 109: 5551
- 23 Paterson I, Findlay AD, Florence GJ. Org. Lett. 2006; 8: 2131
- 24 Paterson I, Goodman JM, Isaka M. Tetrahedron Lett. 1989; 30: 7121
- 25 Evans DA, Chapman KT, Carreira EM. J. Am. Chem. Soc. 1988; 110: 3560
- 26 Li P, Li J, Arikan F, Ahlbrecht W, Dieckmann M, Menche D. J. Org. Chem. 2010; 75: 2429
- 27 Pietruszka J, Witt A. Synthesis 2006; 4266
- 28a Okude Y, Hirano S, Hiyama T, Nozaki H. J. Am. Chem. Soc. 1977; 99: 3179
- 28b Hiyama T, Okude Y, Kimura K, Nozaki H. Bull. Chem. Soc. Jpn. 1982; 55: 561
- 29 Tian Q, Zhang G. Synthesis 2016; 48: 4038
- 30 Kobayashi K, Fujii Y, Hayakawa I, Kigoshi H. Org. Lett. 2011; 13: 900
- 31a Wan Z.-K, Choi H.-W, Kang F.-A, Nakajima K, Demeke D, Kishi Y. Org. Lett. 2002; 4: 4431
- 31b Choi H.-W, Nakajima K, Demeke D, Kang F.-A, Jun H.-S, Wan Z.-K, Kishi Y. Org. Lett. 2002; 4: 4435
- 32 Bahadoor AB, Micalizio G. Org. Lett. 2006; 8: 1181
- 33 Hoye TR, Jeffrey CS, Shao F. Nat. Protoc. 2007; 2: 2451
- 34 Shiina I, Kubota M, Oshiumi H, Hashizume M. J. Org. Chem. 2004; 69: 1822
- 35 Inanga J, Hirata K, Saeki H, Katsuki T, Yamaguchi M. Bull. Chem. Soc. Jpn. 1979; 52: 1989
- 36a Boulos L, Prévost M, Barbeau B, Coallier J, Desjardins R. J. Microbiol. Methods 1999; 37: 77
- 36b Berney M, Hammes F, Bosshard F, Weilenmann H.-U, Egli T. Appl. Environ. Microbiol. 2007; 73: 3283
- 37 Ammermann J. Ph.D. Thesis. Leibniz Universität; Hannover/Germany: 2017