Neuroradiologie Scan 2023; 13(03): 197-219
DOI: 10.1055/a-2014-2445
CME-Fortbildung

Aspekte der Bildgebung des Hippokampus

Isabela S. Alves
,
Artur M. N. Coutinho
,
Ana Vieira
,
Bruno P. Rocha
,
Ula L. Passos
,
Vinicius T. Gonçalves
,
Paulo D. S. Silva
,
Malia X. Zhan
,
Paula C. Pinho
,
Daniel S. Delgado
,
Marcos F. L. Docema
,
Hae W. Lee
,
Bruno A. Policeni
,
Claudia C. Leite
,
Maria G. M. Martin
,
Camila T. Amancio

Der Hippokampus kann von einer Vielzahl von Erkrankungen betroffen sein, die ähnliche klinische Befunde aufweisen. Ein Bildgebungsalgorithmus zur Einteilung in noduläre (raumfordernde) und nicht noduläre Erkrankungen kann bei der Eingrenzung der Differenzialdiagnostik helfen. Ein solcher Algorithmus wird im vorliegenden Beitrag vorgestellt.

Kernaussagen
  • Die MRT ist das bevorzugte bildgebende Verfahren zur Beurteilung des Hippokampus, aber auch die CT und die Nuklearmedizin können zur Analyse beitragen. Bei Läsionen des Hippokampus bietet die FDG-PET in der Regel eine größere Genauigkeit als die Perfusions-SPECT. Die FDG-PET ist der SPECT als Ergänzung zur MRT bei der Differenzialdiagnose von neurodegenerativen Erkrankungen überlegen.

  • Der von den Autoren vorgeschlagene Algorithmus zur Differenzialdiagnose von Läsionen des Hippokampus berücksichtigt morphologische Aspekte: nicht noduläre gegenüber nodulären Läsionen, unilaterale gegenüber bilateralen Läsionen und das Muster von Volumenveränderungen oder von Diffusionseinschränkungen.

  • Eine bilaterale Hippokampusbeteiligung spricht für eine systemische Ursache wie eine toxisch-metabolische, degenerative, inflammatorische (z.B. Autoimmunerkrankung) oder infektiöse Erkrankung (z.B. Herpesenzephalitis). Eine unilaterale Beteiligung wird häufiger mit einer Neoplasie, einer degenerativen Ursache (z.B. FTD), mesialer Temporalsklerose, Ischämie oder transitorischer globaler Amnesie in Verbindung gebracht.

  • Eine Volumenreduktion findet sich z.B. bei der Alzheimer-Krankheit oder der FTLD, eine Veränderung der DWI-Signalintensität u.a. bei Herpes-simplex-Enzephalitis, iktalen Veränderungen oder transienter globaler Amnesie.

  • Bei nodulären Läsionen wird zwischen zystischen Läsionen (z.B. Fissura-choroidea-Zyste oder Gangliogliom), nicht zystischen Läsionen (z.B. Neurofibromatose Typ 1) und solchen mit T1w Hyperintensität (u.a. neurokutane Melanose und angiozentrisches Gliom) unterschieden.



Publication History

Article published online:
13 July 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Witter MP, Amaral DG. Hippocampal formation. In: Paxinos G. The rat nervous system. Amsterdam, the Netherlands: Elsevier/Academic Press; 2004
  • 2 Su L, Hayes L, Soteriades S. et al. Hippocampal stratum radiatum, lacunosum, and moleculare sparing in mild cognitive impairment. J Alzheimers Dis 2017; 61: 415-424
  • 3 Schultz C, Engelhardt M. Anatomy of the hippocampal formation. Front Neurol Neurosci 2014; 34: 6-17
  • 4 Thomas AG, Koumellis P, Dineen RA. The fornix in health and disease: an imaging review. RadioGraphics 2011; 31: 1107-1121
  • 5 Cave CB, Squire LR. Intact verbal and nonverbal short-term memory following damage to the human hippocampus. Hippocampus 1992; 2: 151-163
  • 6 Kier EL, Kim JH, Fulbright RK. et al. Embryology of the human fetal hippocampus: MR imaging, anatomy, and histology. AJNR Am J Neuroradiol 1997; 18: 525-532
  • 7 Gamss RP, Slasky SE, Bello JA. et al. Prevalence of hippocampal malrotation in a population without seizures. AJNR Am J Neuroradiol 2009; 30: 1571-1573
  • 8 Dekeyzer S, De I Kock, Nikoubashman O. et al. “Unforgettable”: a pictorial essay on anatomy and pathology of the hippocampus. Insights Imaging 2017; 8: 199-212
  • 9 Álvarez-Linera Prado J. Structural magnetic resonance imaging in epilepsy [in Spanish]. Radiologia 2012; 54: 9-20
  • 10 Weon YC, Kim JH, Lee JS. et al. Optimal diffusion-weighted imaging protocol for lesion detection in transient global amnesia. AJNR Am J Neuroradiol 2008; 29: 1324-1328
  • 11 Staffaroni AM, Elahi FM, McDermott D. et al. Neuro­imaging in dementia. Semin Neurol 2017; 37: 510-537
  • 12 Louis S, Morita-Sherman M, Jones S. et al. Hippocampal sclerosis detection with NeuroQuant compared with neuroradiologists. AJNR Am J Neuroradiol 2020; 41: 591-597
  • 13 Juni JE, Waxman AD, Devous Sr MD. et al. Procedure guideline for brain perfusion SPECT using (99m)Tc radiopharmaceuticals 3.0. J Nucl Med Technol 2009; 37: 191-195
  • 14 Nobili F, Arbizu J, Bouwman F. et al. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18 F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. Eur J Neurol 2018; 25: 1201-1217
  • 15 Dalmau J, Rosenfeld MR. Autoimmune encephalitis update. Neuro Oncol 2014; 16: 771-778
  • 16 Enkirch SJ, Traschütz A, Müller A. et al. The ERICA score: an MR imaging-based visual scoring system for the assessment of entorhinal cortex atrophy in Alzheimer disease. Radiology 2018; 288: 226-333
  • 17 Duan Y, Lin Y, Rosen D. et al. Identifying morphological patterns of hippocampal atrophy in patients with mesial temporal lobe epilepsy and Alzheimer disease. Front Neurol 2020; 11: 21
  • 18 Harper L, Barkhof F, Scheltens P. et al. An algorithmic approach to structural imaging in dementia. J Neurol Neurosurg Psychiatry 2014; 85: 692-698
  • 19 Bott NT, Radke A, Stephens ML. et al. Frontotemporal dementia: diagnosis, deficits and management. Neurodegener Dis Manag 2014; 4: 439-454
  • 20 Patel KP, Wymer DT, Bhatia VK. et al. Multimodality imaging of dementia: clinical importance and role of integrated anatomic and molecular imaging. RadioGraphics 2020; 40: 200-222
  • 21 Nelson PT, Dickson DW, Trojanowski JQ. et al. Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 2019; 142: 1503-1527
  • 22 Josephs KA, Whitwell JL, Knopman DS. et al. Abnormal TDP-43 immunoreactivity in AD modifies clinicopathologic and radiologic phenotype. Neurology 2008; 70: 1850-1857
  • 23 Zarow C, Wang L, Chui HC. et al. MRI shows more severe hippocampal atrophy and shape deformation in hippocampal sclerosis than in Alzheimer’s disease. Int J Alzheimers Dis 2011; 2011: 483972
  • 24 Dawe RJ, Bennett DA, Schneider JA. et al. Neuropathologic correlates of hippocampal atrophy in the elderly: a clinical, pathologic, postmortem MRI study. PLoS One 2011; 6: e26286
  • 25 Mendez MF. Early-onset Alzheimer disease and its variants. Continuum (Minneap Minn) 2019; 25: 34-51
  • 26 Blümcke I, Thom M, Aronica E. et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a Task Force report from the ILAE Commission on Diagnostic Methods. Epilepsia 2013; 54: 1315-1329
  • 27 Salmenperä T, Könönen M, Roberts N. et al. Hippocampal damage in newly diagnosed focal epilepsy: a prospective MRI study. Neurology 2005; 64: 62-68
  • 28 Theodore WH. Presurgical focus localization in epilepsy: PET and SPECT. Semin Nucl Med 2017; 47: 44-53
  • 29 Park S, Hong JY, Lee MK. et al. Hippocampal sclerosis and encephalomalacia as prognostic factors of tuberculous meningitis-related and herpes simplex encephalitis-related epilepsy. Seizure 2011; 20: 570-574
  • 30 Choi SJ, Hwang HY, Kim NR. et al. The radiologic features of cystic versus noncystic glioblastoma multiforme as significant prognostic factors. J Korean Soc Radiol 2010; 63: 299
  • 31 Wattjes MP, Henneman WJP, van der Flier WM. et al. Diagnostic imaging of patients in a memory clinic: comparison of MR imaging and 64-detector row CT. Radiology 2009; 253: 174-183
  • 32 da Rocha AJ, Nunes RH, Maia Jr ACM. et al. Recognizing autoimmune-mediated encephalitis in the differential diagnosis of limbic disorders. AJNR Am J Neuroradiol 2015; 36: 2196-2205
  • 33 Leypoldt F, Buchert R, Kleiter I. et al. Fluorodeoxyglucose positron emission tomography in anti-N-methyl-D-aspartate receptor encephalitis: distinct pattern of disease. J Neurol Neurosurg Psychiatry 2012; 83: 681-686
  • 34 Probasco JC, Solnes L, Nalluri A. et al. Abnormal brain metabolism on FDG-PET/CT is a common early finding in autoimmune encephalitis. Neurol Neuroimmunol Neuroinflamm 2017; 4: e352
  • 35 Armangue T, Leypoldt F, Dalmau J. Autoimmune encephalitis as differential diagnosis of infectious encephalitis. Curr Opin Neurol 2014; 27: 361-368
  • 36 Whitley RJ. Herpes simplex encephalitis: adolescents and adults. Antiviral Res 2006; 71: 141-148
  • 37 Soares BP, Provenzale JM. Imaging of herpesvirus infections of the CNS. AJR Am J Roentgenol 2016; 206: 39-48
  • 38 Pisché G, Spitz I, Siffray-Bauer L. et al. All that glitters is not gold: a limbic encephalitis due to neurosyphilis. Rev Neurol (Paris) 2021; 177: 156-157
  • 39 Abdelerahman KT, Santamaria DD, Rakocevic G. Pearls and oysters: neurosyphilis presenting as mesial temporal encephalitis. Neurology 2012; 79: e206-e208
  • 40 Seeley WW, Marty FM, Holmes TM. et al. Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology 2007; 69: 156-165
  • 41 Santoro JD, Hemond CC. Human herpesvirus 6 associated post-transplant acute limbic encephalitis: cinical observations of biomarkers for risk of seizure in a pediatric population. Transpl Infect Dis 2019; 21: e13003
  • 42 Requena M, Sarria-Estrada S, Santamarina E. et al. Peri-ictal magnetic resonance imaging in status epilepticus: temporal relationship and prognostic value in 60 patients. Seizure 2019; 71: 289-294
  • 43 Williams JA, Bede P, Doherty CP. An exploration of the spectrum of peri-ictal MRI change: a comprehensive literature review. Seizure 2017; 50: 19-32
  • 44 Yu JT, Tan L. Diffusion-weighted magnetic resonance imaging demonstrates parenchymal pathophysiological changes in epilepsy. Brain Res Brain Res Rev 2008; 59: 34-41
  • 45 de Oliveira AM, Paulino MV, Vieira APF. et al. Imaging patterns of toxic and metabolic brain disorders. RadioGraphics 2019; 39: 1672-1695
  • 46 Sharma P, Eesa M, Scott JN. Toxic and acquired metabolic encephalopathies: MRI appearance. AJR Am J Roentgenol 2009; 193: 879-886
  • 47 Sedlaczek O, Hirsch JG, Grips E. et al. Detection of delayed focal MR changes in the lateral hippocampus in transient global amnesia. Neurology 2004; 62: 2165-2170
  • 48 Szabo K. Hippocampal stroke. Front Neurol Neurosci 2014; 34: 150-156
  • 49 Altafulla JJ, Suh S, Bordes S. et al. Choroidal fissure and choroidal fissure cysts: a comprehensive review. Anat Cell Biol 2020; 53: 121-125
  • 50 Louis DN, Wesseling P, Aldape K. et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 2020; 30: 844-856
  • 51 Nunes RH, Hsu CC, da Rocha AJ. et al. Multinodular and vacuolating neuronal tumor of the cerebrum: a new “leave me alone” lesion with a characteristic imaging pattern. AJNR Am J Neuroradiol 2017; 38: 1899-1904
  • 52 Rudie JD, Rauschecker AM, Nabavizadeh SA. et al. Neuroimaging of dilated perivascular spaces: from benign and pathologic causes to mimics. J Neuroimaging 2018; 28: 139-149
  • 53 Adachi Y, Yagishita A. Gangliogliomas: characteristic imaging findings and role in the temporal lobe epilepsy. Neuroradiology 2008; 50: 829-834
  • 54 Shin JH, Lee HK, Khang SK. et al. Neuronal tumors of the central nervous system: radiologic findings and pathologic correlation. RadioGraphics 2002; 22: 1177-1189
  • 55 Rickert CH, Paulus W. Epidemiology of central nervous system tumors in childhood and adolescence based on the new WHO classification. Childs Nerv Syst 2001; 17: 503-511
  • 56 Suh YL. Dysembryoplastic neuroepithelial tumors. J Pathol Transl Med 2015; 49: 438-449
  • 57 Thom M, Toma A, An S. et al. One hundred and one dysembryoplastic neuroepithelial tumors: an adult epilepsy series with immunohistochemical, molecular genetic, and clinical correlations and a review of the literature. J Neuropathol Exp Neurol 2011; 70: 859-878
  • 58 Crespo-Rodríguez AM, Smirniotopoulos JG, Rushing EJ. MR and CT imaging of 24 pleomorphic xanthoastrocytomas (PXA) and a review of the literature. Neuroradiology 2007; 49: 307-315
  • 59 SongTao Q, Lei Y, Si G. et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci 2012; 103: 269-273
  • 60 Severino M, Geraldo AF, Utz N. et al. Definitions and classification of malformations of cortical development: practical guidelines. Brain 2020; 143: 2874-2894
  • 61 Najm IM, Sarnat HB, Blümcke I. Review: the international consensus classification of focal cortical dysplasia – a critical update 2018. Neuropathol Appl Neurobiol 2018; 44: 18-31
  • 62 Oegema R, Barkovich AJ, Mancini GMS. et al. Subcortical heterotopic gray matter brain malformations: classification study of 107 individuals. Neurology 2019; 93: e1360-e1373
  • 63 Gill DS, Hyman SL, Steinberg A. et al. Age-related findings on MRI in neurofibromatosis type 1. Pediatr Radiol 2006; 36: 1048-1056
  • 64 Barkovich MJ, Tan CH, Nillo RM. et al. Abnormal morphology of select cortical and subcortical regions in neurofibromatosis type 1. Radiology 2018; 289: 499-508
  • 65 Kockelkoren R, De Vis JB, Stavenga M. et al. Hippocampal calcification on brain CT: prevalence and risk factors in a cerebrovascular cohort. Eur Radiol 2018; 28: 3811-3818
  • 66 Gonçalves FG, de Melo MB, de L Matos V. et al. Amygdalae and striatum calcification in lipoid proteinosis. AJNR Am J Neuroradiol 2010; 31: 88-90
  • 67 Tanoue Y, Uda T, Nakajo K. et al. Surgically treated intracranial supratentorial calcifying pseudoneoplasms of the neuraxis (CAPNON) with drug-resistant left temporal lobe epilepsy: a case report and review of the literature. Epilepsy Behav Case Rep 2019; 11: 107-114
  • 68 Johnson DR, Giannini C, Jenkins RB. et al. Plenty of calcification: imaging characterization of polymorphous low-grade neuroepithelial tumor of the young. Neuroradiology 2019; 61: 1327-1332
  • 69 Huse JT, Snuderl M, Jones DTW. et al. Polymorphous low-grade neuroepithelial tumor of the young (PLNTY): an epileptogenic neoplasm with oligodendroglioma-like components, aberrant CD34 expression, and genetic alterations involving the MAP kinase pathway. Acta Neuropathol 2017; 133: 417-429
  • 70 Smith AB, Rushing EJ, Smirniotopoulos JG. Pigmented lesions of the central nervous system: radiologic-pathologic correlation. RadioGraphics 2009; 29: 1503-1524
  • 71 Fox H. Neurocutaneous melanosis. In: Vinken PJ, Bruyn GW. Handbook of clinical neurology. Amsterdam, the Netherlands: North Holland; 1972: 414-428
  • 72 Shakur SF, McGirt MJ, Johnson MW. et al. Angiocentric glioma: a case series. J Neurosurg Pediatr 2009; 3: 197-202