Subscribe to RSS
DOI: 10.1055/a-2019-1532
Photocatalytic Defluoroalkylation of Trifluoroacetates with Alkenes using 4-(Acetamido)thiophenol
This work was financially supported by the University of Science and Technology of China (USTC; GG2065010002).
Abstract
Under mild irradiation conditions using violet light-emitting diodes, a catalytic amount of a thiolate of N-(4-mercaptophenyl)pivalamide promotes monoselective defluoroalkylation of trifluoroacetates with a variety of aliphatic alkenes in the presence of a formate salt. The reactions allow facile and low-cost synthesis of valuable α,α-difluoro substituted aliphatic carboxylate esters under mild conditions, and demonstrate the dual-functional role of arenethiolates in photocatalysis as both a strong photoreductant in a redox cycle and a hydrogen-atom-transfer catalyst.
Key words
defluoroalkylation - trifluoroacetate - arenethiolate - dual function catalysts - photoredox catalysis - HAT catalysisSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2019-1532.
- Supporting Information
Publication History
Received: 14 October 2022
Accepted after revision: 24 January 2023
Accepted Manuscript online:
24 January 2023
Article published online:
01 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Schmalzbauer M, Marcon M, König B. Angew. Chem. Int. Ed. 2020; 59: 2
- 1b Li H, Liu Y, Chiba S. JACS Au 2021; 1: 2121
- 1c Wang S, Wang H, König B. J. Am. Chem. Soc. 2021; 143: 15530
- 2a Liu B, Lim C.-H, Miyake GM. J. Am. Chem. Soc. 2017; 139: 13616
- 2b Li G, Yan Q, Gan Z, Li Q, Dou X, Yang D. Org. Lett. 2019; 21: 7938
- 2c Yang M, Cao T, Xu T, Liao S. Org. Lett. 2019; 21: 8673
- 2d Huang H, Ye J.-H, Zhu L, Ran C.-K, Miao M, Wang W, Chen H, Zhou W.-J, Lan Y, Yu B, Yu D.-G. CCS Chem. 2020; 2: 1746
- 2e De Pedro Beato E, Spinnato D, Zhou W, Melchiorre P. J. Am. Chem. Soc. 2021; 143: 12304
- 2f Kohara K, Trowbridge A, Smith MA, Gaunt MJ. J. Am. Chem. Soc. 2021; 143: 19268
- 2g Uchikura T, Hara Y, Tsubono K, Akiyama T. ACS Org. Inorg. Au 2021; 1: 23
- 2h Saux EL, Zanini M, Melchiorre P. J. Am. Chem. Soc. 2022; 144: 1113
- 3a Schweitzer-Chaput B, Horwitz MA, De Pedro Beato E, Melchiorre P. Nat. Chem. 2019; 11: 129
- 3b Cuadros S, Horwitz MA, Schweitzer-Chaput B, Melchiorre P. Chem. Sci. 2019; 10: 5484
- 3c Mazzarella D, Magagnano G, Schweitzer-Chaput B, Melchiorre P. ACS Catal. 2019; 9: 5876
- 3d Spinnato D, Schweitzer-Chaput B, Goti G, Ošeka M, Melchiorre P. Angew. Chem. Int. Ed. 2020; 59: 9485
- 3e De Pedro Beato E, Mazzarella D, Balletti M, Melchiorre P. Chem. Sci. 2020; 11: 6312
- 3f Wang S, Wang H, König B. Chem 2021; 7: 1653
- 4a Wilger DJ, Gesmundo NJ, Nicewicz DA. Chem. Sci. 2013; 4: 3160
- 4b Romero NA, Nicewicz DA. J. Am. Chem. Soc. 2014; 136: 17024
- 4c Qvortrup K, Rankic DA, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 626
- 4d Nguyen TM, Manohar N, Nicewicz DA. Angew. Chem. Int. Ed. 2014; 53: 6198
- 4e Hager D, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 16986
- 4f Jin J, MacMillan DW. C. Nature 2015; 525: 87
- 4g Cuthbertson JD, MacMillan DW. C. Nature 2015; 519: 74
- 4h Wang Y, Li Y, Jiang X. Chem. Asian J. 2018; 13: 2208
- 4i Steiner A, Williams JD, Rincón JA, de Frutos O, Mateos C, Kappe CO. Eur. J. Org. Chem. 2019; 5807
- 4j Wang H, Man Y, Xiang Y, Wang K, Li N, Tang B. Chem. Commun. 2019; 55: 11426
- 4k Wu F, Wang L, Ji Y, Zou G, Shen H, Nicewicz DA, Chen J, Huang Y. iScience 2020; 23: 101395
- 4l Chinn AJ, Sedillo K, Doyle AG. J. Am. Chem. Soc. 2021; 143: 18331
- 5a Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. ACS Catal. 2021; 11: 82
- 5b Liu C, Li K, Shang R. ACS Catal. 2022; 12: 4103
- 6a Jeffrey JL, Terrett JA, MacMillan DW. C. Science 2015; 349: 1532
- 6b Zhang X, MacMillan DW. C. J. Am. Chem. Soc. 2017; 139: 11353
- 6c Dimakos V, Su HY, Garrett GE, Taylor MS. J. Am. Chem. Soc. 2019; 141: 5149
- 7a Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
- 7b Wang Y.-T, Fu M.-C, Zhao B, Shang R, Fu Y. Chem. Commun. 2020; 56: 2495
- 7c Wang G.-Z, Fu M.-C, Zhao B, Shang R. Sci. China Chem. 2021; 64: 439
- 7d Liu C, Shen N, Shang R. Org. Chem. Front. 2021; 8: 4166
- 7e Liu C, Shen N, Shang R. Nat. Commun. 2022; 13: 354
- 7f Shen N, Li R, Liu C, Shen X, Guan W, Shang R. ACS Catal. 2022; 12: 2788
- 8a Yoshida S, Shimomori K, Kim Y, Hosoya T. Angew. Chem. Int. Ed. 2016; 55: 10406
- 8b Chen K, Berg N, Gschwind R, König B. J. Am. Chem. Soc. 2017; 139: 18444
- 8c Wang H, Jui NT. J. Am. Chem. Soc. 2018; 140: 163
- 8d Vogt DB, Seath CP, Wang H, Jui NT. J. Am. Chem. Soc. 2019; 141: 13203
- 8e Luo C, Bandar JS. J. Am. Chem. Soc. 2019; 141: 14120
- 8f Idogawa R, Kim Y, Shimomori K, Hosoya T, Yoshida S. Org. Lett. 2020; 22: 9292
- 8g Sugihara N, Suzuki K, Nishimoto Y, Yasuda M. J. Am. Chem. Soc. 2021; 143: 9308
- 8h Yu Y.-J, Zhang F.-L, Peng T.-Y, Wang C.-L, Cheng J, Chen C, Houk KN, Wang Y.-F. Science 2021; 371: 1232
- 8i Luo Y.-C, Tong F.-F, Zhang Y, He C.-Y, Zhang X. J. Am. Chem. Soc. 2021; 143: 13971
- 8j Campbell MW, Polites VC, Patel S, Lipson JE, Majhi J, Molander GA. J. Am. Chem. Soc. 2021; 143: 19648
- 8k Ye J.-H, Bellotti P, Heusel C, Glorius F. Angew. Chem. Int. Ed. 2022; 61, e202115456
- 8l Ghosh S, Qu Z.-W, Pradhan S, Ghosh A, Grimme S, Chatterjee I. Angew. Chem. Int. Ed. 2022; 61: e202115272
- 8m Xu P, Wang X.-Y, Wang Z, Zhao J, Cao X.-D, Xiong X.-C, Yuan Y.-C, Zhu S, Guo D, Zhu X. Org. Lett. 2022; 24: 4075
- 8n Wright SE, Bandar JS. J. Am. Chem. Soc. 2022; 144: 13032
- 9a Silvi M, Arceo E, Jurberg ID, Cassani C, Melchiorre P. J. Am. Chem. Soc. 2015; 137: 6120
- 9b Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
- 10 Zhang F.-L, Li B, Houk KN, Wang Y.-F. JACS Au 2022; 2: 1032