Synthesis 2023; 55(18): 2833-2842 DOI: 10.1055/a-2020-8923
short review
Special Issue Electrochemical Organic Synthesis
Recent Advances in Electro- or Photochemical Driven Transformations via Cleavage of the C–N Bond of Quaternary Ammonium Salts
Xiaohui Chen
a
School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, P. R. of China
,
Neng-Zhong Wang
b
Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, P. R. of China
,
Ya-Min Cheng
c
College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. of China
,
Xianqiang Kong∗
a
School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, P. R. of China
,
Zhong-Yan Cao∗
c
College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. of China
› Author Affiliations We thank the funding from the National Natural Science Foundation of China (NSFC) (22102012, 22202021, 22272011, and 22201062), Changzhou Science and Technology Plan Applied Basic Research Project (CJ20210159, CJ20210129, and CZ20220022), Natural Science Foundation of Henan Province (K22029Y), the Jiangsu Higher Education Institutions of China (22KJA150001, 21KJD530003, 21KJB530013), and the opening funding of Hubei Key Laboratory of Natural Products Research and Development, China Three Gorges University (2022NPRD02).
Abstract
Selective functionalization via cleavage of the C–N bond of amines has proven to be challenging partly because of its relatively high bond dissociation energy, even though amines are abundant and readily available. To meet this challenge, many new transformations based on the pre-activation of the C–N bond before the cleavage have been developed. Among them, the conversion of amines into quaternary ammonium salts has certain advantages, such as easy preparation from primary, secondary, or tertiary amines, as well as stable storage and usage. Although transition metal catalysis has been frequently applied for developing new transformations via oxidative addition of the C–N bond of quaternary ammonium salts, recent studies have shown a new dimension by using green electro- or photochemical tools. In this short review, recent advances in electro-, photo-, or photoelectrochemical driven synthetic applications of quaternary ammonium salts have been summarized and discussed.
1 Introduction
2 Electrochemical Driven Transformations
3 Photochemical Driven Transformations
4 Photoelectrochemical Driven Transformations
5 Conclusion and Outlook
Key words
quaternary ammonium salts -
synthetic transformation -
C–N bond cleavage -
amines -
electrochemistry -
photochemistry
Publication History
Received: 30 December 2022
Accepted after revision: 26 January 2023
Accepted Manuscript online: 26 January 2023
Article published online: 01 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Nugent TC.
Chiral Amine Synthesis: Methods, Developments and Applications. Wiley-VCH; Weinheim: 2010
1b The list of Top 200 Brand Name Drugs by Retail Sales in 2019 was compiled and produced by the Njardarson group (accessed Feb 14, 2023): https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster
1c
Wu X,
Ren J,
Shao Z,
Yang X,
Qian D.
ACS Catal. 2021; 11: 6560
2a
Ouyang K,
Hao W,
Zhang W.-X,
Xi Z.
Chem. Rev. 2015; 115: 12045
2b
Wang Q,
Su Y,
Li L,
Huang H.
Chem. Soc. Rev. 2016; 45: 1257
2c
Dherange BD,
Yuan M,
Kelly CB,
Reiher CA,
Grosanu C,
Berger KJ,
Gutierrez O,
Levin MD.
J. Am. Chem. Soc. 2023; 145: 17
3a
Sambiagio C,
Schönbauer D,
Blieck R,
Dao-Huy T,
Pototschnig G,
Schaaf P,
Wiesinger T,
Zia MF,
Wencel-Delord J,
Besset T,
Maes BU. W,
Schnürch M.
Chem. Soc. Rev. 2018; 47: 6603
3b
Gandeepan P,
Müller T,
Zell D,
Cera G,
Warratz S,
Ackermann L.
Chem. Rev. 2019; 119: 2192
4a
Chen F,
Wang T,
Jiao N.
Chem. Rev. 2014; 114: 8613
4b
Fumagalli G,
Stanton S,
Bower JF.
Chem. Rev. 2017; 117: 9404
4c
Song F,
Gou T,
Wang B.-Q,
Shi Z.-J.
Chem. Soc. Rev. 2018; 47: 7078
5a
Cornella J,
Zarate C,
Martin R.
Chem. Soc. Rev. 2014; 43: 8081
5b
Tobisu M,
Chatani N.
Acc. Chem. Res. 2015; 48: 1717
6
Blanksby SJ,
Ellison GB.
Acc. Chem. Res. 2003; 36: 255
7a
Galli C.
Chem. Rev. 1988; 88: 765
7b
Mo F,
Qiu D,
Zhang L,
Wang J.
Chem. Rev. 2021; 121: 5741
8
Rössler SL,
Jelier BJ,
Magnier E,
Dagousset G,
Carreira EM,
Togni A.
Angew. Chem. Int. Ed. 2020; 59: 9264
9a
Li G,
Chen Y,
Xia J.-B.
Chin. J. Org. Chem. 2018; 38: 1949
9b
Wang Z.-X,
Yang B.
Org. Biomol. Chem. 2020; 18: 1057
9c
Wang C.
Chem. Pharm. Bull. 2020; 68: 683
9d
García-Cárceles J,
Bahou KA,
Bower JF.
ACS Catal. 2020; 10: 12738
9e
Wang Y,
Li F,
Zeng Q.
Acta Chim. Sin. 2022; 80: 386
10
Wenkert E,
Han A.-L,
Jenny C.-J.
J. Chem. Soc., Chem. Commun. 1988; 975
For selected reviews, see:
11a
Yan M,
Kawamata Y,
Baran PS.
Chem. Rev. 2017; 117: 13230
11b
Tang S,
Liu Y,
Lei A.
Chem 2018; 4: 27
11c
Xiong P,
Xu H.-C.
Acc. Chem. Res. 2019; 52: 3339
11d
Siu JC,
Fu NK,
Lin S.
Acc. Chem. Res. 2020; 53: 547
11e
Yu Y,
Guo P,
Zhong J.-S,
Yuan Y,
Ye K.-Y.
Org. Chem. Front. 2020; 7: 131
11f
Ma C,
Fang P,
Liu Z,
Xu S,
Xu K,
Cheng X,
Lei A,
Xu H,
Zeng CC,
Mei T.-S.
Sci. Bull. 2021; 66: 2412
11g
He W.-M,
Cui X.
Chin. Chem. Lett. 2021; 32: 1589
11h
Huang B,
Sun Z,
Sun G.
eScience 2022; 2: 243
12a
Emmert B.
Ber. Dtsch. Chem. Ges. 1909; 42: 1507
12b
Emmert B.
Ber. Dtsch. Chem. Ges. 1909; 42: 1997
12c
Emmert B.
Ber. Dtsch. Chem. Ges. 1912; 45: 430
13
Annibaletto J,
Jacob C,
Theunissen C.
Org. Lett. 2022; 24: 4170
14a
Nicewicz DA,
MacMillan DW. C.
Science 2008; 322: 77
14b
Ischay MA,
Anzovino ME,
Du J,
Yoon TP.
J. Am. Chem. Soc. 2008; 130: 12886
14c
Narayanam JM. R,
Tucker JW,
Stephenson CR. J.
J. Am. Chem. Soc. 2009; 131: 8756
15a
Mfuh AM,
Doyle JD,
Chhetri B,
Arman HD,
Larionov OV.
J. Am. Chem. Soc. 2016; 138: 2985
15b
Liao L,
Cao G,
Ye J,
Sun G,
Zhou W,
Gui Y,
Yan S,
Shen G,
Yu D.-G.
J. Am. Chem. Soc. 2018; 140: 17338
15c
Jin S,
Dang H,
Haug G,
He R,
Nguyen VD,
Arman HD,
Schanze KS,
Larionov OV.
J. Am. Chem. Soc. 2020; 142: 1603
16a
Kong X,
Chen X,
Chen Y,
Cao Z.-Y.
J. Org. Chem. 2022; 87: 7013
16b
He H.-D,
Zhang Z,
Tang H,
Xu Y,
Xu X,
Cao Z,
Xu H,
Li Y.
Org. Chem. Front. 2022; 9: 4875
16c
Zhang Z,
Feng Y,
Ruan Z,
Xu Y,
Cao Z.-Y,
Li M.-H,
Wang C.
Chem. Commun. 2022; 58: 11709
16d
Kong X,
Chen Y,
Liu Q,
Wang W,
Zhang S,
Zhang Q,
Chen X,
Xu Y.-Q,
Cao Z.-Y.
Org. Lett. 2023; 25: 581
17a
Southworth BC,
Osteryoung R,
Fleischer KD,
Nachod FC.
Anal. Chem. 1961; 33: 208
17b
Ross SD,
Finkelstein M,
Petersen RC.
J. Am. Chem. Soc. 1960; 82: 1582
17c
Mayell JS,
Bard AJ.
J. Am. Chem. Soc. 1963; 85: 421
17d
Ross SD,
Finkelstein M,
Petersen RC.
J. Am. Chem. Soc. 1970; 92: 6003
18
Yang D.-T,
Zhu M,
Schiffer ZJ,
Williams K,
Song X,
Liu X,
Manthiram K.
ACS Catal. 2019; 9: 4699
19
Kong X,
Lin L,
Chen Q,
Xu B.
Org. Chem. Front. 2021; 8: 702
20a
Kong X,
Wang Y,
Chen Y,
Chen X,
Lin L,
Cao Z.-Y.
Org. Chem. Front. 2022; 9: 1288
For other recent cyanations, see:
20b
Zhang H,
Zhou Y,
Tian P,
Jiang C.
Org. Lett. 2019; 21: 1921
20c
Zhou L,
Wei S,
Lei Z,
Zhu G,
Zhang Z.
Chem. Eur. J. 2021; 27: 7103
20d
Zhang G,
Huang P,
Li Z,
Guo J,
Pei Y,
Li M,
Ding W,
Wu J.
Cell Rep. Phys. Sci. 2022; 3: 101104
20e
Hu D,
Zhang Y,
Li J,
Liang K,
Xia C.
Chem. Commun. 2023; 59: 462
20f
Yu Y,
Jiang Y,
Wu S,
Shi Z,
Wu J,
Yuan Y,
Ye K.
Chin. Chem. Lett. 2022; 33: 2009
21
Roth HG,
Romero NA,
Nicewicz DA.
Synlett 2016; 27: 714
22a
Goossen LJ,
Rudolphi F,
Oppel C,
Rodríguez N.
Angew. Chem. Int. Ed. 2008; 47: 3043
See also:
22b
Shang R,
Fu Y,
Li J.-B,
Zhang S.-L,
Guo Q.-X,
Liu L.
J. Am. Chem. Soc. 2009; 131: 5738
23a
Chu L,
Lipshultz JM,
MacMillan DW. C.
Angew. Chem. Int. Ed. 2015; 54: 7929
23b
Cheng W.-M,
Shang R,
Yu H.-Z,
Fu Y.
Chem. Eur. J. 2015; 21: 13191
23c
Zhu D.-L,
Wu Q,
Young DJ,
Wang H,
Ren Z.-G,
Li H.-X.
Org. Lett. 2020; 22: 6832
23d
Bai D,
Guo Y,
Ma D,
Guo X,
Wu H.
Org. Lett. 2023; 25: 533
24
Kong X,
Chen Y,
Chen X,
Lu Z.-X,
Wang W,
Ni S.-F,
Cao Z.-Y.
Org. Lett. 2022; 24: 2137
25a
Kabi A,
Clay PG.
Radiat. Res. 1968; 34: 680
See also:
25b
Bobrowski K.
J. Phys. Chem. 1981; 85: 382
26a
Kerzig C,
Guo X,
Wenger OS.
J. Am. Chem. Soc. 2019; 141: 2122
For a recent example to form benzylic radical, see:
26b
Xiang P,
Sun K,
Wang S,
Chen X,
Qu L,
Yu B.
Chin. Chem. Lett. 2022; 33: 5074
27
Noto N,
Saito S.
ACS Catal. 2022; 12: 15400
28
Veatch AM,
Liu S,
Alexanian EJ.
Angew. Chem. Int. Ed. 2022; 61: e202210772
29
Brunet J.-J,
Sidot C,
Caubere P.
Tetrahedron Lett. 1981; 22: 1013
For recent selected reviews, see:
30a
Barham JP,
Konig B.
Angew. Chem. Int. Ed. 2020; 59: 11732
30b
Liu JJ,
Lu LX,
Wood D,
Lin S.
ACS Cent. Sci. 2020; 6: 1317
30c
Yang G,
Wang Y,
Qiu Y.
Chin. J. Org. Chem. 2021; 41: 3935
31
Moutet J.-C,
Reverdy G.
Tetrahedron Lett. 1979; 20: 2389
For recent selected examples, see:
32a
Huang H,
Strater ZM,
Rauch M,
Shee J,
Sisto TJ,
Nuckolls C,
Lambert TH.
Angew. Chem. Int. Ed. 2019; 58: 13318
32b
Yan H,
Hou ZW,
Xu HC.
Angew. Chem. Int. Ed. 2019; 58: 4592
32c
Qiu YA,
Scheremetjew A,
Finger LH,
Ackermann L.
Chem. Eur. J. 2020; 26: 3241
32d
Zhang W,
Carpenter KL,
Lin S.
Angew. Chem. Int. Ed. 2020; 59: 409
33a
Wang F,
Stahl SS.
Angew. Chem. Int. Ed. 2019; 58: 6385
33b
Niu L,
Jiang C,
Liang Y,
Liu D,
Bu F,
Shi R,
Chen H,
Chowdhury AD,
Lei A.
J. Am. Chem. Soc. 2020; 142: 17693
33c
Xu H.-C,
Xu F,
Lai X.-L.
Synlett 2021; 32: 369
34a
Li TF,
Kasahara T,
He JF,
Dettelbach KE,
Sammis GM,
Berlinguette CP.
Nat. Commun. 2017; 8: 390
34b
Zhang L,
Liardet L,
Luo J,
Ren D,
Grätzel M,
Hu X.
Nat. Catal. 2019; 2: 366
35
Yan H,
Song J,
Zhu S,
Xu H.-C.
CCS Chem. 2021; 3: 317
36
Chernowsky CP,
Chmiel AF,
Wickens ZK.
Angew. Chem. Int. Ed. 2021; 60: 21418