Klin Monbl Augenheilkd 2023; 240(06): 751-760
DOI: 10.1055/a-2023-9124
Klinische Studie

Risk Factors for Keratoconus Progression in Children Compared with Young and Middle-aged Adults

Risikofaktoren für das Fortschreiten des Keratokonus bei Kindern im Vergleich zu Erwachsenen im jungen und mittleren Alter
Department of Ophthalmology, Saarland University Hospital and Medical Faculty, Homburg, Germany
,
Department of Ophthalmology, Saarland University Hospital and Medical Faculty, Homburg, Germany
,
Theresia Jullien
Department of Ophthalmology, Saarland University Hospital and Medical Faculty, Homburg, Germany
,
Loïc Hamon
Department of Ophthalmology, Saarland University Hospital and Medical Faculty, Homburg, Germany
,
Department of Ophthalmology, Saarland University Hospital and Medical Faculty, Homburg, Germany
› Author Affiliations

Abstract

Background To investigate the risk factors for keratoconus progression in children (10 – 18 years old; age group 1) compared to young adults (19 – 35 years old; age group 2) and middle-aged adults (36 – 55 years old; age group 3).

Patients/Methods Ninety-seven children, 445 young adults, and 342 middle-aged adults underwent total ophthalmic examination including clinical refraction, slit lamp examination, corneal tomography, eye biometry, and biomechanical properties measurements. Comparisons were assessed among three age groups and between progressive and nonprogressive eyes. Logistic regression was applied to determine the potential prognostic factors for keratoconus progression in the three age groups.

Results Univariate logistic regression analysis show that the most prominent factors associated with progression were corneal posterior vertical radius (RVP), eye rubbing (RUB), slit lamp corneal thinning (SLT), contact lens use (CL), and central corneal thickness (CCT) in all age groups. Additionally, the anterior chamber volume (ACV) and keratoconus match index (KMI) were associated with progression in age group 1. Location of the thinnest corneal thickness at the vertical axis (TCTy), distance from apex to the thinnest point (BADISTAPEX), scissor reflection in retinoscopy (SKIAREFLEX), and Vogt striae were associated with progression in age group 2, and TCTy, anterior and posterior asphericity (ASPA and ASPP, respectively), BADISTAPEX, SKIAREFLEX, and Vogt striae were associated with progression in age group 3. The multivariate model with the highest predictability indicated RVP, ACV, and SLT as independent determinants of progression in age group 1 (AUC: 90%, sensitivity: 88.9%, specificity: 90.9%), RVP, ACV, SLT, and SKIAREFLEX in group 2 (AUC: 81.6%, sensitivity 88.5%, specificity: 70.3%), and RVP, SLT, Vogt striae, and CL in age group 3 (AUC: 80%, sensitivity 82.8%, specificity: 73%).

Conclusion ACV and KMI seem to play a major role in the progression of pediatric KC compared to adults. This is probably due to different anatomical and biomechanical characteristics of a childʼs eye globe.

Zusammenfassung

Hintergrund Diese Studie untersucht die Risikofaktoren für das Fortschreiten des Keratokonus bei Kindern (10 – 18 Jahre) im Vergleich zu jungen Erwachsenen (19 – 35 Jahre) und Erwachsenen mittleren Alters (36 – 55 Jahre).

Patienten und Methoden 97 Kinder, 445 junge Erwachsene und 342 Erwachsene mittleren Alters unterzogen sich einer umfassenden augenärztlichen Untersuchung, die eine klinische Refraktion, eine Spaltlampenuntersuchung, eine Hornhauttomografie, eine Augenbiometrie und eine Messung der biomechanischen Eigenschaften umfasste. Es wurde ein Vergleich zwischen den 3 Altersgruppen sowie zwischen progressiven und nicht progressiven Augen vorgenommen. Mithilfe einer logistischen Regression wurden die potenziellen prognostischen Faktoren für das Fortschreiten des Keratokonus in den 3 Altersgruppen verglichen.

Ergebnisse Eine univariate logistische Regressionsanalyse zeigt, dass die folgenden wichtigsten Faktoren mit dem Fortschreiten des Keratokonus in allen Altersgruppen assoziiert sind: vertikaler Krümmungsradius der hinteren Hornhaut (RVP), Augenreiben (RUB), Spaltlampen-Hornhautausdünnung (SLT), Tragen von Kontaktlinsen (CL) und zentrale Hornhautdicke (CCT). Zusätzlich wurden das Vorderkammervolumen (ACV) und der Keratokonus-Match-Index (KMI) mit der Progression in der Altersgruppe 1 in Verbindung gebracht. Die Stelle der dünnsten Hornhautdicke an der vertikalen Achse (TCTy), der Abstand vom Apex zur dünnsten Stelle (BADISTAPEX), die helle Reflexion des nasalen Bereichs des Limbus (SKIAREFLEX) und die Vogt-Linien wurden mit der Progression in der Altersgruppe 2 assoziiert, und TCTy, vordere und hintere Asphärizität (ASPA bzw. ASPP), BADISTAPEX, SKIAREFLEX und Vogt-Linien wurden mit der Progression in der Altersgruppe 3 assoziiert. Das Multivarianzmodell mit der höchsten Vorhersagbarkeit zeigte RVP, ACV und SLT als unabhängige Determinanten der Progression in Altersgruppe 1 (AUC: 90%, Sensitivität: 88,9%, Spezifität: 90,9%), RVP, ACV, SLT und SKIAREFLEX in Gruppe 2 (AUC: 81,6%, Sensitivität 88,5%, Spezifität: 70,3%) und RVP, SLT, Vogt-Linien und CL in Altersgruppe 3 (AUC: 80%, Sensitivität 82,8%, Spezifität: 73%).

Schlussfolgerungen Das Volumen der Vorderkammer und der Keratokonus-Match-Index scheinen beim Fortschreiten des KC bei Kindern im Vergleich zu Erwachsenen eine größere Rolle zu spielen. Dies ist wahrscheinlich auf die unterschiedlichen anatomischen und biomechanischen Merkmale des kindlichen Augapfels zurückzuführen.



Publication History

Received: 01 December 2022

Accepted: 30 January 2023

Accepted Manuscript online:
31 January 2023

Article published online:
22 June 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rabinowitz YS. Keratoconus. Surv Ophthalmol 1998; 42: 297-319
  • 2 Eppig T, Spira-Eppig C, Goebels S. et al. Asymmetry between left and right eyes in keratoconus patients increases with the severity of the worse eye. Curr Eye Res 2018; 43: 848-855
  • 3 Meyer JJ, Gokul A, Vellara HR. et al. Progression of keratoconus in children and adolescents. Br J Ophthalmol 2023; 107: 176-180
  • 4 Meyer JJ, Gokul A, Vellara HR. et al. rogression of keratoconus in children and adolescents. Br J Ophthalmol 2021; 1-5
  • 5 Gokul A, Patel DV, Watters GA. et al. The natural history of corneal topographic progression of keratoconus after age 30 years in non-contact lens wearers. Br J Ophthalmol 2017; 101: 839-844
  • 6 Soeters N, van der Valk R, Tahzib NG. Corneal cross-linking for treatment of progressive keratoconus in various age groups. J Refract Surg 2014; 30: 454-460
  • 7 Koller T, Mrochen M, Seiler T. Complication and failure rates after corneal crosslinking. J Cataract Refract Surg 2009; 35: 1358-1362
  • 8 Larkin DFP, Chowdhury K, Burr JM. et al. KERALINK Trial Study Group. Effect of Corneal Cross-linking versus Standard Care on Keratoconus Progression in Young Patients: The KERALINK Randomized Controlled Trial. Ophthalmology 2021; 128: 1516-1526
  • 9 OʼBrart DP. Corneal collagen cross-linking: a review. J Optom 2014; 7: 113-124
  • 10 Ferdi A, Nguyen V, Kandel H. et al. Predictors of progression in untreated keratoconus: a Save Sight Keratoconus Registry study. Br J Ophthalmol 2022; 106: 1206-1211
  • 11 Vinciguerra R, Belin MW, Borgia A. et al. Evaluating keratoconus progression prior to crosslinking: maximum keratometry vs. the ABCD grading system. J Cataract Refract Surg 2021; 47: 33-39
  • 12 Tuft SJ, Moodaley LC, Gregory WM. et al. Prognostic factors for the progression of keratoconus. Ophthalmology 1994; 101: 439-447
  • 13 Reeves SW, Stinnett S, Adelman RA. et al. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am J Ophthalmol 2005; 140: 607-611
  • 14 Kato N, Negishi K, Sakai C. et al. Baseline factors predicting the need for corneal crosslinking in patients with keratoconus. PLoS One 2020; 15: 1-8
  • 15 Fujimoto H, Maeda N, Shintani A. et al. Quantitative Evaluation of the Natural Progression of Keratoconus Using Three-Dimensional Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2016; 57: 169-175
  • 16 Chatzis N, Hafezi F. Progression of keratoconus and efficacy of pediatric corneal collagen cross-linking in children and adolescents. J Refract Surg 2012; 28: 753-758
  • 17 Gomes JA, Rapuano CJ, Belin MW. et al. Global Consensus on Keratoconus Diagnosis. Cornea 2015; 34: 38-39
  • 18 Rama P, Di Matteo F, Matuska S. Acanthamoeba keratitis with perforation after corneal crosslinking and bandage contact lens use. J Cataract Refract Surg 2009; 35: 788-791
  • 19 Erol MA, Atalay E, Özalp O. et al. Superiority of Baseline Biomechanical Properties over Corneal Tomography in Predicting Keratoconus Progression. Turk J Ophthalmol 2021; 51: 257-264
  • 20 Fontana ST, Brubaker RF. Volume and depth of the anterior chamber in the normal aging human eye. Arch Ophthalmol 1980; 98: 1803-1808
  • 21 Knox Cartwright NE, Tyrer JR, Marshall J. Age-related differences in the elasticity of the human cornea. Invest Ophthalmol Vis Sci 2011; 52: 4324-4329
  • 22 Elsheikh A, Geraghty B, Rama P. et al. Characterization of age-related variation in corneal biomechanical properties. J R Soc Interface 2010; 7: 1475-1485
  • 23 Polse KA, Brand R, Mandell R. et al. Age differences in corneal hydration control. Invest Ophthalmol Vis Sci 1989; 30: 392-399
  • 24 Sharifipour F, Panahi-Bazaz M, Bidar R. et al. Age-related variations in corneal biomechanical properties. J Curr Ophthalmol 2016; 28: 117-122
  • 25 Kotecha A, Elsheikh A, Roberts CR. et al. Corneal thickness- and age-related biomechanical properties of the cornea measured with the ocular response analyzer. Invest Ophthalmol Vis Sci 2006; 47: 5337-5347
  • 26 Carvalho LA, Prado M, Cunha RH. et al. Keratoconus prediction using a finite element model of the cornea with local biomechanical properties. Arq Bras Oftalmol 2009; 72: 139-145
  • 27 Hamilton A, Wong S, Carley F. et al. Tomographic indices as possible risk factors for progression in pediatric keratoconus. J AAPOS 2016; 20: 523-526
  • 28 Lass JH, Lembach RG, Park SB. et al. Clinical management of keratoconus. A multicenter analysis. Ophthalmology 1990; 97: 433-445
  • 29 Goebels S, Käsmann-Kellner B, Eppig T. et al. Can retinoscopy keep up in keratoconus diagnosis?. Cont Lens Anterior Eye 2015; 38: 234-239