Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(18): 2999-3004
DOI: 10.1055/a-2034-9821
DOI: 10.1055/a-2034-9821
paper
Special Issue Electrochemical Organic Synthesis
Electrochemical Cross-Coupling Reactions between Arylboronic Esters and Aryllithiums Using NaBr as a Halogen Mediator
This work was supported in part by Okayama Foundation for Science and Technology, Wesco Scientific Promotion Foundation, The Sanyo Broadcasting Foundation, Electric Technology Research Foundation of Chugoku, and JSPS KAKENHI grant numbers JP22H02122 (to K.M.), JP22K05115 (to S.S.), and JP21H05214 (Digitalization-driven Transformative Organic Synthesis) (to S.S.).
Abstract
An electrochemical cross-coupling reaction between arylboronic esters and aryllithiums was developed. The presence of Br– in the electrolyte was found to be essential for the reaction. NaBr was chosen as the electrolyte for its inexpensiveness and abundance, and also acted as a halogen mediator. The reaction proceeded under mild conditions to afford biaryls.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2034-9821.
- Supporting Information
Publication History
Received: 15 December 2022
Accepted after revision: 14 February 2023
Accepted Manuscript online:
14 February 2023
Article published online:
15 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 For a review, see: Biffis A, Centomo P, Del Zotto A, Zecca C. Chem. Rev. 2018; 118: 2249
- 2a Nyberg K. Acta Chem. Scand. 1973; 27: 503
- 2b Morofuji T, Shimizu A, Yoshida J. Angew. Chem. Int. Ed. 2012; 51: 7259
- 2c Kirste A, Elsler B, Schnakenburg G, Waldvogel SR. J. Am. Chem. Soc. 2012; 134: 3571
- 2d Kirste A, Nieger M, Malkowsky IM, Stecker F, Fischer A, Waldvogel SR. Chem. Eur. J. 2009; 15: 2273
- 2e Elsler B, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2014; 53: 5210
- 2f Wiebe A, Schollmeyer D, Dyballa KM, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2016; 55: 11801
- 2g Wiebe A, Lips S, Schollmeyer D, Franke R, Waldvogel SR. Angew. Chem. Int. Ed. 2017; 56: 14727
- 2h Boy P, Combellas C, Suba C, Thiebault A. J. Org. Chem. 1994; 59: 4482
- 2i Wang Y, Tian B, Ding M, Shi Z. Chem. Eur. J. 2020; 26: 4297
- 2j Hou Z.-W, Jiang T, Wu T.-X, Wang L. Org. Lett. 2021; 23: 8585
- 2k Hou Z.-W, Li L, Wang L. Org. Chem. Front. 2022; 9: 2815
- 3a Geske DH. J. Phys. Chem. 1959; 63: 1062
- 3b Beil SB, Möhle S, Enders P, Waldvogel SR. Chem. Commun. 2018; 54: 6128
- 3c Music A, Baumann AN, Spieß P, Plantefol A, Jagau TC, Didier D. J. Am. Chem. Soc. 2020; 142: 4341
- 4a Levy AB. J. Org. Chem. 1978; 43: 4684
- 4b Akimoto I, Suzuki A. Synthesis 1979; 146
- 4c Levy AB, Marinelli ER. Tetrahedron Lett. 1979; 20: 2313
- 4d Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK. Nat. Chem. 2014; 6: 584
- 4e Llaveri J, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2015; 137: 10958
- 4f Odachowski M, Bonet A, Essafi S, Conti-Ramsden P, Harvey JN, Leonori D, Essafi S, Aggarwal VK. J. Am. Chem. Soc. 2016; 138: 9521
- 4g Ganesh V, Odachowski M, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 9752
- 4h Wilson CM, Ganesh V, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2017; 56: 16318
- 4i Aichhorn S, Bigler R, Myers E, Aggarwal VK. J. Am. Chem. Soc. 2017; 139: 9519
- 4j Ganesh V, Noble A, Aggarwal VK. Org. Lett. 2018; 20: 6144
- 4k Silvi M, Aggarwal VK. J. Am. Chem. Soc. 2019; 141: 9511
- 4l Mizoguchi H, Kamada H, Morimoto K, Yoshida R, Sakakura A. Chem. Sci. 2022; 13: 9580
- 4m Paul S, Das KK, Manna S, Panda S. Chem. Eur. J. 2020; 26: 1922
- 5a Mitsudo K, Matsuo R, Yonezawa T, Inoue H, Mandai H, Suga S. Angew. Chem. Int. Ed. 2020; 59: 7803
- 5b Mitsudo K, Yoshioka K, Hirata T, Mandai H, Midorikawa K, Suga S. Synlett 2019; 30: 1209
- 5c Kurimoto Y, Yamashita J, Mitsudo K, Sato E, Suga S. Org. Lett. 2021; 23: 3120
- 5d Sato E, Niki Y, Mitsudo K, Suga S. Chem. Lett. 2022; 51: 629
- 5e Mitsudo K, Inoue H, Niki Y, Sato E, Suga S. Beilstein J. Org. Chem. 2022; 18: 1055
- 5f Mitsudo K, Tachibana Y, Sato E, Suga S. Org. Lett. 2022; 24: 8547
- 6a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 6b Lian F, Xu K, Zeng C. Chem. Rec. 2021; 21: 2290
- 6c Tang H.-T, Jia J.-S, Pan Y.-M. Org. Biomol. Chem. 2020; 18: 5315
- 7 We also carried out the reaction between N-methylindolylboronic ester and phenyllithium and found that this reaction proceeded even without electrolysis. For details, see the Supporting Information.
- 8 [Br+] species would be Br3 –, see: Takiguchi T, Nonaka T. Bull. Chem. Soc. Jpn. 1987; 60: 3137
- 9 Sandee AJ, Williams CK, Evans NR, Davies JE, Boothby CE, Köhler A, Friend RH, Holmes AB. J. Am. Chem. Soc. 2004; 126: 7041
- 10 Buring L, Paulussen FM, Antonchick AP. Org. Lett. 2018; 20: 1978
- 11 Kang S.-K, Baik T.-G, Song S.-Y. Synlett 1999; 327
- 12 Pinxterhuis EB, Giannerini M, Hornillos V, Feringa BL. Nat. Commun. 2015; 7: 11698
- 13 He Z, Shrives HJ, Abengozar FA, Neufeld J, Yang K, Pulis AP, Procter DJ. Angew. Chem. Int. Ed. 2018; 57: 5759
- 14 Kuhn M, Falk FC, Paradies J. Org. Lett. 2011; 13: 4100
- 15 Ghorai D, Loup J, Zanoni G, Ackermann L. Synlett 2019; 30: 429
- 16 Lian C, Yue G, Zhang H, Wei L, Liu D, Liu S, Fang H, Qiu D. Tetrahedron Lett. 2018; 59: 4019
For representative examples, see:
For representative recent works, see:
For recent reviews related to halogen mediators, see: