Synthesis, Inhaltsverzeichnis Synthesis 2023; 55(11): 1792-1798DOI: 10.1055/a-2036-3868 paper Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award Anti-Markovnikov Hydrogermylation of Alkenes via Lewis Acid Catalysis Aymane Selmani , Franziska Schoenebeck∗ Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract The direct hydrogermylation of alkenes under Lewis acid catalysis is reported. The use of borane B(C6F5)3 as a catalyst allows for a mild, metal-free hydrogermylation of alkenes and concomitant reduction of ketones and aldehydes. Regardless of electronic biases, anti-Markovnikov hydrogermylation is observed in high yields. Moreover, the process is scalable and proceeds under mild conditions at room temperature. Key words Key wordsorganogermanes - hydrogermylation - Lewis acid - catalysis - anti-Markovnikov Volltext Referenzen References 1 For a recent review, see: Fricke C, Schoenebeck F. Acc. Chem. Res. 2020; 53: 2715 For examples, see: 2a Spivey AC, Gripton CJ. G, Hannah JP, Tseng C.-C, de Fraine P, Parr NJ, Scicinski JJ. Appl. Organomet. Chem. 2007; 21: 572 2b Enokido T, Fugami K, Endo M, Kameyama M, Kosugi M. Adv. Synth. Catal. 2004; 346: 1685 2c Song HJ, Jiang WT, Zhou QL, Xu MY, Xiao B. ACS Catal. 2018; 8: 9287 2d Spivey AC, Tseng C.-C, Hannah JP, Gripton CJ. G, de Fraine P, Parr NJ, Scicinski JJ. Chem. Commun. 2007; 2926 3a Fricke C, Dahiya A, Reid WB, Schoenebeck F. ACS Catal. 2019; 9: 9231 3b Fricke C, Sherborne GJ, Funes-Ardoiz I, Senol E, Guven S, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 17788 3c Dahiya A, Fricke C, Schoenebeck F. J. Am. Chem. Soc. 2020; 142: 7754 3d Sherborne GJ, Gevondian AG, Funes-Ardoiz I, Dahiya A, Fricke C, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 15543 3e Fricke C, Deckers K, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 18717 3f Dahiya A, Schoenebeck F. ACS Catal. 2022; 12: 8048 3g Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Angew. Chem. Int. Ed. 2022; 61: e202201475 4 Xu Q.-H, Wei L.-P, Xiao B. Angew. Chem. Int. Ed. 2022; 61: e202115592 5 Selmani A, Schoetz MD, Queen AE, Schoenebeck F. ACS Catal. 2022; 12: 4833 6a Xue W, Mao W, Zhang L, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 6440 6b Kitching W, Olszowy H, Harvey K. J. Org. Chem. 1981; 46: 2423 For selected examples, see: 7a EtMgBr with Ph3GeCl: Ura Y, Hara R, Takahashi T. J. Organomet. Chem. 2000; 611: 299 7b MeLi with Ph3GeCl: Nanjo M, Oda T, Mochida K. J. Organomet. Chem. 2003; 672: 100 7c Langle S, David-Quillot F, Balland A, Abarbri M, Duchêne A. J. Organomet. Chem. 2003; 671: 113 7d Jiang W.-T, Yang S, Xu M.-Y, Xie X.-Y, Xiao B. Chem. Sci. 2020; 11: 488 8 Guo P, Pang X, Wang K, Su P.-F, Pan Q.-Q, Han G.-Y, Shen Q, Zhao Z.-Z, Zhang W, Shu X.-Z. Org. Lett. 2022; 24: 1802 9 Xu N.-X, Li B.-X, Wang C, Uchiyama M. Angew. Chem. Int. Ed. 2020; 59: 10639 10 Queen AE, Selmani A, Schoenebeck F. Org. Lett. 2022; 24: 406 11 Keess S, Oestreich M. Org. Lett. 2017; 19: 1898 12 Rubin M, Schwier T, Gevorgyan V. J. Org. Chem. 2002; 67: 1936 13 Schwier T, Gevorgyan V. Org. Lett. 2005; 7: 5191 14 Simonneau A, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 11905 15 Yin Q, Kemper S, Klare HF. T, Oestreich M. Chem. Eur. J. 2016; 22: 13840 16 Borg T, Tuzina P, Somfai P. J. Org. Chem. 2011; 76: 8070 17 Siu JC, Parry JB, Lin S. J. Am. Chem. Soc. 2019; 141: 2825 18 Cleary PA, Woerpel KA. Org. Lett. 2005; 7: 5531 19 Yi C.-B, She Z.-Y, Cheng Y.-F, Qu J. Org. Lett. 2018; 20: 668 20 Speer ME, Sterzenbach C, Esser B. ChemPlusChem 2017; 82: 1274 21 Wrackmeyer B. In Modern Magnetic Resonance . Webb GA. Springer; Dordrecht: 2006: 455 Zusatzmaterial Zusatzmaterial Supporting Information