Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(11): 1792-1798
DOI: 10.1055/a-2036-3868
DOI: 10.1055/a-2036-3868
paper
Special Issue dedicated to Prof. Cristina Nevado, recipient of the 2021 Dr. Margaret Faul Women in Chemistry Award
Anti-Markovnikov Hydrogermylation of Alkenes via Lewis Acid Catalysis
The authors thank RWTH Aachen University and the European Research Council (ERC-637993) for funding.
Abstract
The direct hydrogermylation of alkenes under Lewis acid catalysis is reported. The use of borane B(C6F5)3 as a catalyst allows for a mild, metal-free hydrogermylation of alkenes and concomitant reduction of ketones and aldehydes. Regardless of electronic biases, anti-Markovnikov hydrogermylation is observed in high yields. Moreover, the process is scalable and proceeds under mild conditions at room temperature.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2036-3868.
- Supporting Information
Publication History
Received: 16 December 2022
Accepted after revision: 15 February 2023
Accepted Manuscript online:
15 February 2023
Article published online:
28 February 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 For a recent review, see: Fricke C, Schoenebeck F. Acc. Chem. Res. 2020; 53: 2715
- 2a Spivey AC, Gripton CJ. G, Hannah JP, Tseng C.-C, de Fraine P, Parr NJ, Scicinski JJ. Appl. Organomet. Chem. 2007; 21: 572
- 2b Enokido T, Fugami K, Endo M, Kameyama M, Kosugi M. Adv. Synth. Catal. 2004; 346: 1685
- 2c Song HJ, Jiang WT, Zhou QL, Xu MY, Xiao B. ACS Catal. 2018; 8: 9287
- 2d Spivey AC, Tseng C.-C, Hannah JP, Gripton CJ. G, de Fraine P, Parr NJ, Scicinski JJ. Chem. Commun. 2007; 2926
- 3a Fricke C, Dahiya A, Reid WB, Schoenebeck F. ACS Catal. 2019; 9: 9231
- 3b Fricke C, Sherborne GJ, Funes-Ardoiz I, Senol E, Guven S, Schoenebeck F. Angew. Chem. Int. Ed. 2019; 58: 17788
- 3c Dahiya A, Fricke C, Schoenebeck F. J. Am. Chem. Soc. 2020; 142: 7754
- 3d Sherborne GJ, Gevondian AG, Funes-Ardoiz I, Dahiya A, Fricke C, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 15543
- 3e Fricke C, Deckers K, Schoenebeck F. Angew. Chem. Int. Ed. 2020; 59: 18717
- 3f Dahiya A, Schoenebeck F. ACS Catal. 2022; 12: 8048
- 3g Kreisel T, Mendel M, Queen AE, Deckers K, Hupperich D, Riegger J, Fricke C, Schoenebeck F. Angew. Chem. Int. Ed. 2022; 61: e202201475
- 4 Xu Q.-H, Wei L.-P, Xiao B. Angew. Chem. Int. Ed. 2022; 61: e202115592
- 5 Selmani A, Schoetz MD, Queen AE, Schoenebeck F. ACS Catal. 2022; 12: 4833
- 6a Xue W, Mao W, Zhang L, Oestreich M. Angew. Chem. Int. Ed. 2019; 58: 6440
- 6b Kitching W, Olszowy H, Harvey K. J. Org. Chem. 1981; 46: 2423
- 7a EtMgBr with Ph3GeCl: Ura Y, Hara R, Takahashi T. J. Organomet. Chem. 2000; 611: 299
- 7b MeLi with Ph3GeCl: Nanjo M, Oda T, Mochida K. J. Organomet. Chem. 2003; 672: 100
- 7c Langle S, David-Quillot F, Balland A, Abarbri M, Duchêne A. J. Organomet. Chem. 2003; 671: 113
- 7d Jiang W.-T, Yang S, Xu M.-Y, Xie X.-Y, Xiao B. Chem. Sci. 2020; 11: 488
- 8 Guo P, Pang X, Wang K, Su P.-F, Pan Q.-Q, Han G.-Y, Shen Q, Zhao Z.-Z, Zhang W, Shu X.-Z. Org. Lett. 2022; 24: 1802
- 9 Xu N.-X, Li B.-X, Wang C, Uchiyama M. Angew. Chem. Int. Ed. 2020; 59: 10639
- 10 Queen AE, Selmani A, Schoenebeck F. Org. Lett. 2022; 24: 406
- 11 Keess S, Oestreich M. Org. Lett. 2017; 19: 1898
- 12 Rubin M, Schwier T, Gevorgyan V. J. Org. Chem. 2002; 67: 1936
- 13 Schwier T, Gevorgyan V. Org. Lett. 2005; 7: 5191
- 14 Simonneau A, Oestreich M. Angew. Chem. Int. Ed. 2013; 52: 11905
- 15 Yin Q, Kemper S, Klare HF. T, Oestreich M. Chem. Eur. J. 2016; 22: 13840
- 16 Borg T, Tuzina P, Somfai P. J. Org. Chem. 2011; 76: 8070
- 17 Siu JC, Parry JB, Lin S. J. Am. Chem. Soc. 2019; 141: 2825
- 18 Cleary PA, Woerpel KA. Org. Lett. 2005; 7: 5531
- 19 Yi C.-B, She Z.-Y, Cheng Y.-F, Qu J. Org. Lett. 2018; 20: 668
- 20 Speer ME, Sterzenbach C, Esser B. ChemPlusChem 2017; 82: 1274
- 21 Wrackmeyer B. In Modern Magnetic Resonance . Webb GA. Springer; Dordrecht: 2006: 455
For examples, see:
For selected examples, see: