Synthesis 2023; 55(14): 2195-2205
DOI: 10.1055/a-2038-2323
paper

Late-Stage Two-Step C11–H Arylation of Dibenzooxa/thiazepines

Yang Chen
,
Meng-Yao Ma
,
Hongguang Du
,
Jiaxi Xu
,
Zhanhui Yang
This work was financially supported by the Beijing Natural Science Foundation (no. 2202041 to Z.Y.) and the Fundamental Research Funds for the Central Universities (no. XK1802-6 to Z.Y. and J.X.; no. 12060093063 to Z.Y.).


Abstract

A practical and efficient synthesis of 11-aryldibenzooxa/thiazepines is achieved, via a late-stage and two-step C11–H arylation of simple dibenzooxa/thiazepines. The adoption of Grignard addition and DDQ dehydrogenation allows for operationally simple and chemically reliable, step-efficient, and high-yielding transformations. The two-step and one-pot procedures provide excellent yields. The gram-scale experiment demonstrates the promising synthetic potentials in large-scale applications, and the advantages of this method are also highlighted in the efficient synthesis of an H460TaxR inhibitor.

Supporting Information



Publication History

Received: 23 January 2023

Accepted after revision: 17 February 2023

Accepted Manuscript online:
17 February 2023

Article published online:
12 April 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Xiang J, Zhang Z, Mu Y, Xu X, Guo S, Liu Y, Russo DP, Zhu H, Yan B, Bai X. ACS Comb. Sci. 2016; 18: 230
  • 2 Pettersson H, Bülow A, Ek F, Jensen J, Ottesen LK, Fejzic A, Ma J.-N, Del Tredici AL, Currier EA, Gardell LR, Tabatabaei A, Craig D, McFarland K, Ott TR, Piu F, Burstein ES, Olsson R. J. Med. Chem. 2009; 52: 1975
  • 3 Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, Gronemeyer H, Hashimoto Y, Shudo K, Kagechika H. J. Med. Chem. 1997; 40: 4222
  • 4 More GV, Bhanage BM. Org. Biomol. Chem. 2017; 15: 5263
  • 5 Gao K, Yu C.-B, Li W, Zhou Y.-G, Zhang X. Chem. Commun. 2011; 47: 7845
  • 6 Balakrishna B, Bauzá A, Frontera A, Vidal-Ferran A. Chem. Eur. J. 2016; 22: 10607
  • 7 Wang J. Tetrahedron Lett. 2013; 54: 5956
  • 8 Bischler A, Napieralski B. Ber. Dtsch. Chem. Ges. 1893; 26: 1903
  • 9 Brodrick CI, Nicholson JS, Short WF. J. Chem. Soc. 1954; 3857
  • 10 Galt RH. B, Loudon JD. J. Chem. Soc. 1959; 885
  • 11 Hunziker F, Fischer E, Schmutz J. Helv. Chim. Acta 1967; 50: 1588
  • 12 Schmutz J, Künzle F, Hunziker F, Gauch R. Helv. Chim. Acta 1967; 50: 245
  • 13 Noskov VG, Kalinina LN, Noskova MN, Kruglyak YL, Kurochkin VK. Pharm. Chem. J. 1997; 31: 431
  • 14 Fodor G, Nagubandi S. Tetrahedron Lett. 1980; 36: 1279
  • 15 Tsvelikhovsky D, Buchwald SL. J. Am. Chem. Soc. 2011; 133: 14228
  • 16 Hu W, Teng F, Hu H, Luo S, Zhu Q. J. Org. Chem. 2019; 84: 6524
  • 17 Ottesen LK, Ek F, Olsson R. Org. Lett. 2006; 8: 1771
  • 18 Ren Y.-Y, Wang Y.-Q, Liu S, Pan K. ChemCatChem 2014; 6: 2985
  • 19 Luo Y, Xu J. Org. Lett. 2020; 22: 7780
  • 20 Krug C, Hartwig JF. Organometallics 2004; 23: 4594
  • 21 Yang Z, Yu J.-T, Pan C. Org. Biomol. Chem. 2021; 19: 8442
  • 22 Strekowski L, Cegla MT, Harden DB, Mokrosz JL. Tetrahedron Lett. 1988; 29: 4265
  • 23 Alsharif MA, Raja QA, Majeed NA, Jassas RS, Alsimaree AA, Sadiq A, Naeem N, Mughal EU, Alsantali RI, Moussa Z, Ahmed SA. RSC Adv. 2021; 11: 29826
  • 24 Natarajan P, König B. Eur. J. Org. Chem. 2021; 2145
  • 25 Yuan K, Ye X, Cheng D, Yan J. Zhejiang Chem. Ind. 2014; 45: 21
  • 26 Chaolumen, Murata M, Wakamiya A, Murata Y. Angew. Chem. Int. Ed. 2017; 56: 5082
  • 27 Qi HZ, Li XY, Xu JX. Org. Biomol. Chem. 2011; 9: 2702
  • 28 Guidotti S, Leardini R, Nanni D, Pareschi P, Zanardi G. Tetrahedron Lett. 1995; 36: 451
  • 29 Okafor CO. J. Heterocycl. Chem. 1980; 17: 149
  • 30 Okafor CO. Tetrahedron 1988; 44: 1187
  • 31 Xu X, Guo S, Dang Q, Chen J, Bai X. J. Comb. Chem. 2007; 9: 773