Synthesis 2023; 55(18): 2985-2992 DOI: 10.1055/a-2038-9146
paper
Special Issue Electrochemical Organic Synthesis
Electrosynthesis of Flavanones via oxa-Michael Addition Using Sacrificial Electrodes
William A. B. Santos
a
Department of Chemistry, State University of Santa Catarina (UDESC), Joinville – SC, 89219-719, Brazil
b
Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis – SC, 88040-900, Brazil
,
Pedro P. de Castro
c
Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos – SP, 13565-905, Brazil
,
Fernando R. Xavier
a
Department of Chemistry, State University of Santa Catarina (UDESC), Joinville – SC, 89219-719, Brazil
,
Antonio L. Braga
b
Department of Chemistry, Federal University of Santa Catarina (UFSC), Florianópolis – SC, 88040-900, Brazil
,
Guilherme M. Martins∗
c
Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos – SP, 13565-905, Brazil
,
a
Department of Chemistry, State University of Santa Catarina (UDESC), Joinville – SC, 89219-719, Brazil
› Institutsangaben The authors would like to thank the FAPESP (grant numbers: 2022/00074-3 (G. M. M.), and 2021/13924-2 (P. P. C.), FAPESC (grant number: 2021TR964), Capes (001) and INCT-Catálise-FAPESC.
Abstract
An electrochemical synthesis of flavanones via oxa -Michael addition using silver electrode as a sacrifice is reported. This electrosynthetic system showed good yields, broad substrate scope, and good functional group tolerance. Additionally, the method proved to be applicable on a gram-scale. Several studies were carried out to elucidate the reaction mechanism, such as control reactions, cyclic voltammetry, and theoretical studies, allowing the proposal of a plausible pathway for this transformation.
Key words
electrosynthesis -
sacrificial electrodes -
silver -
flavonoids -
cyclization
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-2038-9146.
Supporting Information
Publikationsverlauf
Eingereicht: 13. Dezember 2022
Angenommen nach Revision: 20. Februar 2023
Accepted Manuscript online: 20. Februar 2023
Artikel online veröffentlicht: 22. März 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1
Addi M,
Elbouzidi A,
Abid M,
Tungmunnithum D,
Elamrani A,
Hano C.
Appl. Sci. 2021; 12: 29
2
Kumar D,
Ladaniya MS,
Gurjar M,
Kumar S.
Sci. Rep. 2022; 12: 6684
3
Gleńsk M,
Dudek MK,
Ciach M,
Włodarczyk M.
Nat. Prod. Res. 2021; 35: 1474
4
Obaid RJ,
Mughal EU,
Naeem N,
Sadiq A,
Alsantali RI,
Jassas RS,
Moussa Z,
Ahmed SA.
RSC Adv. 2021; 11: 22159
5
Cabrera M,
Simoens M,
Falchi G,
Lavaggi ML,
Piro OE,
Castellano EE,
Vidal A,
Azqueta A,
Monge A,
de Ceráin AL,
Sagrera G,
Seoane G,
Cerecetto H,
González M.
Bioorg. Med. Chem. 2007; 15: 3356
6
Wang X,
Cao Y,
Chen S,
Lin J,
Bian J,
Huang D.
J. Agric. Food Chem. 2021; 69: 7285
7
Albuquerque de Oliveira Mendes L,
Ponciano CS,
Depieri Cataneo AH,
Wowk PF,
Bordignon J,
Silva H,
Vieira de Almeida M,
Ávila EP.
Chem. Biol. Interact. 2020; 331: 109218
8
Lowe HI. C,
Toyang NJ,
Watson CT,
Ayeah KN,
Bryant J.
Cancer Cell Int. 2017; 17: 38
9
Tutunchi H,
Naeini F,
Ostadrahimi A,
Hosseinzadeh-Attar MJ.
Phyther. Res. 2020; 34: 3137
10
Gour A,
Manhas D,
Bag S,
Gorain B,
Nandi U.
Phyther. Res. 2021; 35: 4258
11
Alzaabi MM,
Hamdy R,
Ashmawy NS,
Hamoda AM,
Alkhayat F,
Khademi NN,
Al Joud SM. A,
El-Keblawy AA,
Soliman SS. M.
Phytochem. Rev. 2022; 21: 291
12
Jannat K,
Paul AK,
Bondhon TA,
Hasan A,
Nawaz M,
Jahan R,
Mahboob T,
Nissapatorn V,
Wilairatana P,
Pereira M. deL,
Rahmatullah M.
Pharmaceutics 2021; 13: 1895
13
Majed Z,
Said S,
Shareef O.
Egypt. J. Chem. 2020; 63: 4379
14
Miura M,
Shigematsu K,
Toriyama M,
Motohashi S.
Tetrahedron Lett. 2021; 85: 153480
15
Mondal R,
Das Gupta A,
Mallik AK.
Tetrahedron Lett. 2011; 52: 5020
16
Nawghare BR,
Gaikwad SV,
Raheem A,
Lokhande PD.
J. Chil. Chem. Soc. 2014; 59: 2284
17
Desai VG,
Desai SR.
Curr. Org. Synth. 2018; 14: 1180
18
Yuan Y,
Lei A.
Nat. Commun. 2020; 11: 802
19
Lam K,
Dobbs A,
Leech MC,
Petti A,
Garcia AD.
React. Chem. Eng. 2020; 5: 977
20
Gomollón-Bel F.
Chem. Int. 2021; 43: 13
21
Ley SV,
Baxendale IR.
Nat. Rev. Drug Discov. 2002; 1: 573
22
Martins GM,
Magalhães MF. A,
Brocksom TJ,
Bagnato VS,
de Oliveira KT. J.
Flow. Chem. 2022; 12: 371
23
Kar S,
Sanderson H,
Roy K,
Benfenati E,
Leszczynski J.
Chem. Rev. 2022; 122: 3637
24
Schaub T.
Chem. Eur. J. 2021; 27: 1865
25
Tanbouza N,
Ollevier T,
Lam K.
iScience 2020; 23: 101720
26
Leech MC,
Garcia AD,
Petti A,
Dobbs AP,
Lam K.
React. Chem. Eng. 2020; 5: 977
27
Sequeira CA. C,
Santos DM. F.
J. Braz. Chem. Soc. 2009; 20: 387
28
Cardoso DS. P,
Šljukić B,
Santos DM. F,
Sequeira CA. C.
Org. Process Res. Dev. 2017; 21: 1213
29
Goodenough JB.
Energy Environ. Sci. 2014; 7: 14
30
Chen K,
Xue D.
J. Mater. Chem. A 2016; 4: 7522
31
Feng Y,
Yang L,
Liu J,
Logan BE.
Environ. Sci. Water Res. Technol. 2016; 2: 800
32
Shatskiy A,
Lundberg H,
Kärkäs MD.
ChemElectroChem 2019; 6: 4067
33
Sbei N,
Hardwick T,
Ahmed N.
ACS Sustain. Chem. Eng. 2021; 9: 6148
34
Heard DM,
Lennox AJ. J.
Angew. Chem. Int. Ed. 2020; 59: 18866
35
Bijaya BK,
Pokhrel T,
Shrestha D,
Adhikari A,
Shirinfar B,
Ahmed N.
In
Reference Module in Chemistry, Molecular Sciences and Chemical Engineering
. Elsevier; Amsterdam: 2023.
36
Mitsudo K,
Shiraga T,
Mizukawa J,
Suga S,
Tanaka H.
Chem. Commun. 2010; 46: 9256
37
Seavill PW,
Holt KB,
Wilden JD.
RSC Adv. 2019; 9: 29300
38
Seavill PW,
Holt KB,
Wilden JD.
Green Chem. 2018; 20: 5474
39
Chapman MR,
Shafi YM,
Kapur N,
Nguyen BN,
Willans CE.
Chem. Commun. 2015; 51: 1282
40
Peters BK,
Rodriguez KX,
Reisberg SH,
Beil SB,
Hickey DP,
Kawamata Y,
Collins M,
Starr J,
Chen L,
Udyavara S,
Klunder K,
Gorey TJ,
Anderson SL,
Neurock M,
Minteer SD,
Baran PS.
Science 2019; 363: 838
41
Manabe S,
Wong CM,
Sevov CS.
J. Am. Chem. Soc. 2020; 142: 3024
42
De Baere K,
Verstraelen H,
Lemmens L,
Lenaerts S,
Dewil R,
Van Ingelgem Y,
Potters G.
J. Mar. Sci. Technol. 2014; 19: 116
43
Xu L,
Xin Y,
Ma L,
Zhang H,
Lin Z,
Li X.
Corros. Commun. 2021; 2: 33
44
Zayed A,
Garbatov Y,
Guedes Soares C.
Ocean Eng. 2018; 163: 299
45
Martins GM,
Zimmer GC,
Mendes SR,
Ahmed N.
Green Chem. 2020; 22: 4849
46
Martins GM,
Shirinfar B,
Hardwick T,
Ahmed N.
ChemElectroChem 2019; 6: 1300
47
Meirinho AG,
Pereira VF,
Martins GM,
Saba S,
Rafique J,
Braga AL,
Mendes SR.
Eur. J. Org. Chem. 2019; 6423
48
Scheide MR,
Schneider AR,
Jardim GA. M,
Martins GM,
Durigon DC,
Saba S,
Rafique J,
Braga AL.
Org. Biomol. Chem. 2020; 18: 4916
49
Doerner CV,
Scheide MR,
Nicoleti CR,
Durigon DC,
Idiarte VD,
Sousa MJ. A,
Mendes SR,
Saba S,
Neto JS. S,
Martins GM,
Rafique J,
Braga AL.
Front. Chem. 2022; 10: 880099
50
Lazzaris MJ,
Martins GM,
Xavier FR,
Braga AL,
Mendes SR.
Eur. J. Org. Chem. 2021; 4411
51
Scheide MR,
Nicoleti CR,
Martins GM,
Braga AL.
Org. Biomol. Chem. 2021; 19: 2578
52
Sbei N,
Martins GM,
Shirinfar B,
Ahmed N.
Chem. Rec. 2020; 20: 1530
53
Martins GM,
Sbei N,
Zimmer GC,
Ahmed N.
IntechOpen. 2021 , C-H Activation/Functionalization via Metalla-Electrocatalysis. Electrocatalysis and Electrocatalysts for a Cleaner Environment - Fundamentals and Applications. DOI:
54
Benbouguerra N,
Richard T,
Saucier C,
Garcia F.
Antioxidants 2020; 9: 800
55
Mahanty K,
Halder A,
Maiti D,
De Sarkar S.
Synthesis 2023; 55: 400
56
Yang J,
Lai J,
Kong W,
Li S.
J. Agric. Food Chem. 2022; 70: 3409
57
Bera SK,
Maharana RR,
Samanta K,
Mal P.
Org. Biomol. Chem. 2022; 20: 7085
58
Han F,
Choi PH,
Ye C.-X,
Grell Y,
Xie X,
Ivlev SI,
Chen S,
Meggers E.
ACS Catal. 2022; 12: 10304
59
Jiang H,
Zheng X,
Yin Z,
Xie J.
J. Chem. Res. 2011; 35: 220
60
Dauzonne D,
Monneret C.
Synthesis 1997; 1305
61
Pawlak A,
Henklewska M,
Hernández Suárez B,
Łużny M,
Kozłowska E,
Obmińska-Mrukowicz B,
Janeczko T.
Molecules 2020; 25: 4362
62
Carvalho MH. R,
Ribeiro JP. R. S,
De Castro PP,
Passos ST. A,
Neto BA. D,
Dos Santos HF,
Amarante GW.
J. Org. Chem. 2022; 87: 11007
63
Santos IA,
de Castro PP,
Dos Santos HF,
Amarante GW.
Eur. J. Org. Chem. 2022; e202200287