Subscribe to RSS
DOI: 10.1055/a-2038-9146
Electrosynthesis of Flavanones via oxa-Michael Addition Using Sacrificial Electrodes
The authors would like to thank the FAPESP (grant numbers: 2022/00074-3 (G. M. M.), and 2021/13924-2 (P. P. C.), FAPESC (grant number: 2021TR964), Capes (001) and INCT-Catálise-FAPESC.
Abstract
An electrochemical synthesis of flavanones via oxa-Michael addition using silver electrode as a sacrifice is reported. This electrosynthetic system showed good yields, broad substrate scope, and good functional group tolerance. Additionally, the method proved to be applicable on a gram-scale. Several studies were carried out to elucidate the reaction mechanism, such as control reactions, cyclic voltammetry, and theoretical studies, allowing the proposal of a plausible pathway for this transformation.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2038-9146.
- Supporting Information
Publication History
Received: 13 December 2022
Accepted after revision: 20 February 2023
Accepted Manuscript online:
20 February 2023
Article published online:
22 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Addi M, Elbouzidi A, Abid M, Tungmunnithum D, Elamrani A, Hano C. Appl. Sci. 2021; 12: 29
- 2 Kumar D, Ladaniya MS, Gurjar M, Kumar S. Sci. Rep. 2022; 12: 6684
- 3 Gleńsk M, Dudek MK, Ciach M, Włodarczyk M. Nat. Prod. Res. 2021; 35: 1474
- 4 Obaid RJ, Mughal EU, Naeem N, Sadiq A, Alsantali RI, Jassas RS, Moussa Z, Ahmed SA. RSC Adv. 2021; 11: 22159
- 5 Cabrera M, Simoens M, Falchi G, Lavaggi ML, Piro OE, Castellano EE, Vidal A, Azqueta A, Monge A, de Ceráin AL, Sagrera G, Seoane G, Cerecetto H, González M. Bioorg. Med. Chem. 2007; 15: 3356
- 6 Wang X, Cao Y, Chen S, Lin J, Bian J, Huang D. J. Agric. Food Chem. 2021; 69: 7285
- 7 Albuquerque de Oliveira Mendes L, Ponciano CS, Depieri Cataneo AH, Wowk PF, Bordignon J, Silva H, Vieira de Almeida M, Ávila EP. Chem. Biol. Interact. 2020; 331: 109218
- 8 Lowe HI. C, Toyang NJ, Watson CT, Ayeah KN, Bryant J. Cancer Cell Int. 2017; 17: 38
- 9 Tutunchi H, Naeini F, Ostadrahimi A, Hosseinzadeh-Attar MJ. Phyther. Res. 2020; 34: 3137
- 10 Gour A, Manhas D, Bag S, Gorain B, Nandi U. Phyther. Res. 2021; 35: 4258
- 11 Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, Al Joud SM. A, El-Keblawy AA, Soliman SS. M. Phytochem. Rev. 2022; 21: 291
- 12 Jannat K, Paul AK, Bondhon TA, Hasan A, Nawaz M, Jahan R, Mahboob T, Nissapatorn V, Wilairatana P, Pereira M. deL, Rahmatullah M. Pharmaceutics 2021; 13: 1895
- 13 Majed Z, Said S, Shareef O. Egypt. J. Chem. 2020; 63: 4379
- 14 Miura M, Shigematsu K, Toriyama M, Motohashi S. Tetrahedron Lett. 2021; 85: 153480
- 15 Mondal R, Das Gupta A, Mallik AK. Tetrahedron Lett. 2011; 52: 5020
- 16 Nawghare BR, Gaikwad SV, Raheem A, Lokhande PD. J. Chil. Chem. Soc. 2014; 59: 2284
- 17 Desai VG, Desai SR. Curr. Org. Synth. 2018; 14: 1180
- 18 Yuan Y, Lei A. Nat. Commun. 2020; 11: 802
- 19 Lam K, Dobbs A, Leech MC, Petti A, Garcia AD. React. Chem. Eng. 2020; 5: 977
- 20 Gomollón-Bel F. Chem. Int. 2021; 43: 13
- 21 Ley SV, Baxendale IR. Nat. Rev. Drug Discov. 2002; 1: 573
- 22 Martins GM, Magalhães MF. A, Brocksom TJ, Bagnato VS, de Oliveira KT. J. Flow. Chem. 2022; 12: 371
- 23 Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Chem. Rev. 2022; 122: 3637
- 24 Schaub T. Chem. Eur. J. 2021; 27: 1865
- 25 Tanbouza N, Ollevier T, Lam K. iScience 2020; 23: 101720
- 26 Leech MC, Garcia AD, Petti A, Dobbs AP, Lam K. React. Chem. Eng. 2020; 5: 977
- 27 Sequeira CA. C, Santos DM. F. J. Braz. Chem. Soc. 2009; 20: 387
- 28 Cardoso DS. P, Šljukić B, Santos DM. F, Sequeira CA. C. Org. Process Res. Dev. 2017; 21: 1213
- 29 Goodenough JB. Energy Environ. Sci. 2014; 7: 14
- 30 Chen K, Xue D. J. Mater. Chem. A 2016; 4: 7522
- 31 Feng Y, Yang L, Liu J, Logan BE. Environ. Sci. Water Res. Technol. 2016; 2: 800
- 32 Shatskiy A, Lundberg H, Kärkäs MD. ChemElectroChem 2019; 6: 4067
- 33 Sbei N, Hardwick T, Ahmed N. ACS Sustain. Chem. Eng. 2021; 9: 6148
- 34 Heard DM, Lennox AJ. J. Angew. Chem. Int. Ed. 2020; 59: 18866
- 35 Bijaya BK, Pokhrel T, Shrestha D, Adhikari A, Shirinfar B, Ahmed N. In Reference Module in Chemistry, Molecular Sciences and Chemical Engineering . Elsevier; Amsterdam: 2023.
- 36 Mitsudo K, Shiraga T, Mizukawa J, Suga S, Tanaka H. Chem. Commun. 2010; 46: 9256
- 37 Seavill PW, Holt KB, Wilden JD. RSC Adv. 2019; 9: 29300
- 38 Seavill PW, Holt KB, Wilden JD. Green Chem. 2018; 20: 5474
- 39 Chapman MR, Shafi YM, Kapur N, Nguyen BN, Willans CE. Chem. Commun. 2015; 51: 1282
- 40 Peters BK, Rodriguez KX, Reisberg SH, Beil SB, Hickey DP, Kawamata Y, Collins M, Starr J, Chen L, Udyavara S, Klunder K, Gorey TJ, Anderson SL, Neurock M, Minteer SD, Baran PS. Science 2019; 363: 838
- 41 Manabe S, Wong CM, Sevov CS. J. Am. Chem. Soc. 2020; 142: 3024
- 42 De Baere K, Verstraelen H, Lemmens L, Lenaerts S, Dewil R, Van Ingelgem Y, Potters G. J. Mar. Sci. Technol. 2014; 19: 116
- 43 Xu L, Xin Y, Ma L, Zhang H, Lin Z, Li X. Corros. Commun. 2021; 2: 33
- 44 Zayed A, Garbatov Y, Guedes Soares C. Ocean Eng. 2018; 163: 299
- 45 Martins GM, Zimmer GC, Mendes SR, Ahmed N. Green Chem. 2020; 22: 4849
- 46 Martins GM, Shirinfar B, Hardwick T, Ahmed N. ChemElectroChem 2019; 6: 1300
- 47 Meirinho AG, Pereira VF, Martins GM, Saba S, Rafique J, Braga AL, Mendes SR. Eur. J. Org. Chem. 2019; 6423
- 48 Scheide MR, Schneider AR, Jardim GA. M, Martins GM, Durigon DC, Saba S, Rafique J, Braga AL. Org. Biomol. Chem. 2020; 18: 4916
- 49 Doerner CV, Scheide MR, Nicoleti CR, Durigon DC, Idiarte VD, Sousa MJ. A, Mendes SR, Saba S, Neto JS. S, Martins GM, Rafique J, Braga AL. Front. Chem. 2022; 10: 880099
- 50 Lazzaris MJ, Martins GM, Xavier FR, Braga AL, Mendes SR. Eur. J. Org. Chem. 2021; 4411
- 51 Scheide MR, Nicoleti CR, Martins GM, Braga AL. Org. Biomol. Chem. 2021; 19: 2578
- 52 Sbei N, Martins GM, Shirinfar B, Ahmed N. Chem. Rec. 2020; 20: 1530
- 53 Martins GM, Sbei N, Zimmer GC, Ahmed N. IntechOpen. 2021 , C-H Activation/Functionalization via Metalla-Electrocatalysis. Electrocatalysis and Electrocatalysts for a Cleaner Environment - Fundamentals and Applications. DOI:
- 54 Benbouguerra N, Richard T, Saucier C, Garcia F. Antioxidants 2020; 9: 800
- 55 Mahanty K, Halder A, Maiti D, De Sarkar S. Synthesis 2023; 55: 400
- 56 Yang J, Lai J, Kong W, Li S. J. Agric. Food Chem. 2022; 70: 3409
- 57 Bera SK, Maharana RR, Samanta K, Mal P. Org. Biomol. Chem. 2022; 20: 7085
- 58 Han F, Choi PH, Ye C.-X, Grell Y, Xie X, Ivlev SI, Chen S, Meggers E. ACS Catal. 2022; 12: 10304
- 59 Jiang H, Zheng X, Yin Z, Xie J. J. Chem. Res. 2011; 35: 220
- 60 Dauzonne D, Monneret C. Synthesis 1997; 1305
- 61 Pawlak A, Henklewska M, Hernández Suárez B, Łużny M, Kozłowska E, Obmińska-Mrukowicz B, Janeczko T. Molecules 2020; 25: 4362
- 62 Carvalho MH. R, Ribeiro JP. R. S, De Castro PP, Passos ST. A, Neto BA. D, Dos Santos HF, Amarante GW. J. Org. Chem. 2022; 87: 11007
- 63 Santos IA, de Castro PP, Dos Santos HF, Amarante GW. Eur. J. Org. Chem. 2022; e202200287