Subscribe to RSS
DOI: 10.1055/a-2039-4825
Radical Cation [2+2] Cycloadditions Enabled by Surface-Assisted Pseudo-Intramolecular Electron Transfers
This work was supported in part by the Japan Society for the Promotion of Science [JSPS KAKENHI Grant Nos. 16H06193, 17K19221, 22K05450 (to Y.O.), and 21J12556 (to K.N.)] and by the TEPCO Memorial Foundation (to Y.O.).
Abstract
Both intermolecular and intramolecular electron transfers can be the key in the determination of synthetic outcomes of photochemical and electrochemical reactions. Herein, we report dispersed TiO2 nanoparticles in combination with methoxybenzene to be a unique heterogeneous photocatalyst for facilitating the formation of novel cyclobutanes. Although the mechanistic details are as yet unclear, the results described herein imply that methoxybenzene is adsorbed onto the TiO2 surface, coming in close proximity to the forming cyclobutane radical cation, to realize a pseudo-intramolecular electron transfer between the species.
Key words
radical cations - [2+2] cycloaddition - surface-assisted - pseudo-intramolecular process - electron transferSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2039-4825.
- Supporting Information
Publication History
Received: 31 December 2022
Accepted after revision: 21 February 2023
Accepted Manuscript online:
21 February 2023
Article published online:
22 March 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Silvi M, Melchiorre P. Nature 2018; 554: 41
- 1b Twilton J, Le C, Zhang P, Shaw MH, Evans RW, MacMillan DW. C. Nat. Rev. Chem. 2017; 1: 0052
- 1c Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 1d Skubi KL, Blum TR, Yoon TP. Chem. Rev. 2016; 116: 10035
- 1e Kärkäs MD, Porco JA. Jr, Stephenson CR. J. Chem. Rev. 2016; 116: 9683
- 1f Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 2a Rafiee M, Mayer MN, Punchihewa BT, Mumau MR. J. Org. Chem. 2021; 86: 15866
- 2b Little RD. J. Org. Chem. 2020; 85: 13375
- 2c Kärkäs MD. Chem. Soc. Rev. 2018; 47: 5786
- 2d Möhle S, Zirbes M, Rodrigo E, Gieshoff T, Wiebe A, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 6018
- 2e Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
- 2f Waldvogel SR, Lips S, Selt M, Riehl B, Kampf CJ. Chem. Rev. 2018; 118: 6706
- 2g Moeller KD. Chem. Rev. 2018; 118: 4817
- 2h Nutting JE, Rafiee M, Stahl SS. Chem. Rev. 2018; 118: 4834
- 2i Yoshida J, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
- 2j Jiang Y, Xu K, Zeng C. Chem. Rev. 2018; 118: 4485
- 2k Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 3a Huang H.-M, Garduño-Castro MH, Morrill C, Procter DJ. Chem. Soc. Rev. 2019; 48: 4626
- 3b Matsui JK, Lang SB, Heitz DR, Molander GA. ACS Catal. 2017; 7: 2563
- 3c Yan M, Lo JC, Edwards JT, Baran PS. J. Am. Chem. Soc. 2016; 138: 12692
- 3d Crossley SW. M, Obradors C, Martinez RM, Shenvi RA. Chem. Rev. 2016; 116: 8912
- 3e Hoffmann RW. Chem. Soc. Rev. 2016; 45: 577
- 3f Chen Z.-M, Zhang X.-M, Tu Y.-Q. Chem. Soc. Rev. 2015; 44: 5220
- 3g Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
- 3h Tang S, Liu K, Liu C, Lei A. Chem. Soc. Rev. 2015; 44: 1070
- 3i Wille U. Chem. Rev. 2013; 113: 813
- 4 Feng R, Smith JA, Moeller KD. Acc. Chem. Res. 2017; 50: 2346
- 5a Nacsa ED, MacMillan DW. C. J. Am. Chem. Soc. 2018; 140: 3322
- 5b Jin J, MacMillan DW. C. Nature 2015; 525: 87
- 6a Cao Z.-Y, Ghosh T, Melchiorre P. Nat. Commun. 2018; 9: 3274
- 6b Bahamonde A, Murphy JJ, Savarese M, Bremond E, Cavalli A, Melchiorre P. J. Am. Chem. Soc. 2017; 139: 4559
- 6c Murphy JJ, Bastida D, Paria S, Fagnoni M, Melchiorre P. Nature 2016; 532: 218
- 7a Adachi S, Horiguchi G, Kamiya H, Okada Y. Eur. J. Org. Chem. 2022; e202201207
- 7b Hashimoto Y, Horiguchi G, Kamiya H, Okada Y. Chem. Eur. J. 2022; 28: e202202018
- 7c Nakayama K, Kamiya H, Okada Y. Beilstein J. Org. Chem. 2022; 18: 1100
- 7d Maeta N, Kamiya H, Okada Y. J. Org. Chem. 2020; 85: 6551
- 7e Nakayama K, Maeta N, Horiguchi G, Kamiya H, Okada Y. Org. Lett. 2019; 21: 2246
- 7f Okada Y, Maeta N, Nakayama K, Kamiya H. J. Org. Chem. 2018; 83: 4948
- 8a Okada Y. Electrochemistry 2020; 88: 497
- 8b Okada Y, Chiba K. Chem. Rev. 2018; 118: 4592
- 9a Shida N, Imada Y, Okada Y, Chiba K. Eur. J. Org. Chem. 2020; 570
- 9b Imada Y, Yamaguchi Y, Shida N, Okada Y, Chiba K. Chem. Commun. 2017; 53: 3960
- 10 Okada Y. Chem. Rec. 2021; 21: 2223
- 11a Okada Y. J. Org. Chem. 2019; 84: 1882
- 11b Okada Y, Yamaguchi Y, Ozaki A, Chiba K. Chem. Sci. 2016; 7: 6387
- 11c Okada Y, Nishimoto A, Akaba R, Chiba K. J. Org. Chem. 2011; 76: 3470
- 12a Maeta N, Kamiya H, Okada Y. Org. Lett. 2019; 21: 8519
- 12b Yamaguchi Y, Okada Y, Chiba K. J. Org. Chem. 2013; 78: 2626
- 13 Tanami S, Hussaini SR, Kitano Y, Chiba K, Okada Y. Eur. J. Org. Chem. 2022; e202201023
- 14a Luo M.-J, Xiao Q, Li J.-H. Chem. Soc. Rev. 2022; 51: 7206
- 14b Margrey KA, Nicewicz DA. Acc. Chem. Res. 2016; 49: 1997
For selected reviews, see:
For selected reviews, see:
For selected reviews, see:
For recent examples, see:
For selected reviews, see:
For selected reviews of the alkene-derived radical cation chemistry, see: