Klin Monbl Augenheilkd 2023; 240(08): 997-1003
DOI: 10.1055/a-2040-4144
Klinische Studie

The Effects of Long-term Growth Hormone Treatment on Ocular Findings

Die Auswirkungen einer Langzeitbehandlung mit Wachstumshormonen auf die Augenbefunde
Mehmet Tahir Eski
1   Ophthalmology, Private Erzincan Neon Hospital, Erzincan, Turkey
,
Kuddusi Teberik
2   Ophthalmology, Duzce University Medical School, Duzce, Turkey
,
Semih Bolu
3   Pediatric Endocrinology, Adiyaman Universitesi, Adiyaman, Turkey
,
Handan Ankarali
4   Biostatistics and Medical Informatics Department, Istanbul Medeniyet University, Istanbul, Turkey
,
Murat Kaya
2   Ophthalmology, Duzce University Medical School, Duzce, Turkey
,
Ilknur Arslanoglu
5   Pediatric Endocrinology, Duzce University Medical School, Duzce, Turkey
› Author Affiliations

Abstract

Purpose This study aimed to examine the long-term changes in anterior chamber depth (ACD), central corneal thickness (CCT), axial length (AxL), peripapillary retinal nerve fibre layer thickness (RNFLT), peripapillary ganglion cell layer – inner plexiform layer (GCL-IPL) thickness, and peripapillary choroidal thickness (ChT) after rhGH replacement treatment in paediatric patients with IGHD, compared to healthy controls.

Methods Twenty-two children with IGHD including 12 girls and 10 boys were enrolled in the study group, and 30 (16 girls, 14 boys) healthy children composed the control group. A detailed ophthalmological examination was performed for each participant. ACD, CCT, AxL, peripapillary RNFLT, GCL-IPL thickness and ChT measurements were performed before the rhGH replacement treatment and in the 12th month of the post-treatment period, as well as the corresponding visits in the control group. AxL ultrasound pachymetry (CCT), peripapillary RNFL thickness, peripapillary RNFLT, GCL-IPL thickness, and peripapillary ChT parameters were measured by spectral-domain optical coherence tomography.

Results The mean age of the groups were similar (p = 0.143). 12-month CCT, ACD, and AxL measurements of the study group showed significantly higher results than the pre-treatment measurements (p = 0.005, p = 0.024, and p = 0.002, respectively). Similarly, the mean RNFLT and ChT measurements of the study group obtained from all sectors were significantly higher in the 12th-month visit (p < 0.001 for both) other than the RNFLT, and GCL-IPL thickness measurements (p > 0.05 for all). However, all these parameters were similar at pre- and post-treatment visits in the control group (p > 0.05 for all). The mean pre-treatment values of all these parameters were significantly lower in the study group compared to the control group (p < 0.05 for all), other than the RNFLT, GCL-IPL thickness measurements (p > 0.05 for all), while the mean post-treatment values of all these parameters in both groups were similar at month 12 (p > 0.05 for all).

Conclusion GH replacement treatment in childhood may play an important role in the development of the neural retina and can be effective on the anterior segment, RNFLT and ChT measurements.

Zusammenfassung

Zweck Diese Studie zielte darauf ab, die langfristigen Veränderungen der Vorderkammertiefe (ACD), der zentralen Hornhautdicke (CCT), der axialen Länge (AxL), der Dicke der peripapillären retinalen Nervenfaserschicht (RNFLT), die Schichtdicke der peripapillären Ganglienzellschicht zusammen mit der inneren plexiformen Schicht (GCL-IPL) und die peripapilläre Aderhautdicke (ChT) nach rhGH-Ersatzbehandlung bei pädiatrischen Patienten mit IGHD im Vergleich zu gesunden Kontrollpersonen zu untersuchen.

Methoden 22 Kinder mit IGHD (isoliertem Wachstumshormonmangel), darunter 12 Mädchen und 10 Jungen, wurden in die Studiengruppe aufgenommen, und 30 (16 Mädchen, 14 Jungen) gesunde Kinder bildeten die Kontrollgruppe. Bei jedem Teilnehmer wurde eine ausführliche augenärztliche Untersuchung durchgeführt. ACD-, CCT-, AxL-, peripapilläre RNFLT-, GCL-IPL-Dicken- und ChT-Messungen wurden vor der rhGH-Ersatzbehandlung (rhGH: rekombinantes Wachstumshormon) und im 12. Monat der Nachbehandlung sowie bei den entsprechenden Besuchen in der Kontrollgruppe durchgeführt. AxL-Ultraschallpachymetrie (CCT), peripapilläre RNFL-Dicke, peripapilläre RNFLT, GCL-IPL-Dicke und peripapilläre ChT-Parameter wurden durch optische Kohärenztomografie im Spektralbereich gemessen.

Ergebnisse Das Durchschnittsalter der Gruppen war ähnlich (p = 0,143). 12-monatige CCT-, ACD- und AxL-Messungen der Studiengruppe zeigten signifikant höhere Ergebnisse als die Messungen vor der Behandlung (p = 0,005, p = 0,024 bzw. p = 0,002). In ähnlicher Weise waren die mittleren RNFLT- und ChT-Messungen der Studiengruppe aus allen Sektoren beim Besuch im 12. Monat (p < 0,001 für beide) signifikant höher als die RNFLT-, GCL-IPL-Dickenmessungen (p > 0,05 für alle). Alle diese Parameter waren jedoch bei den Besuchen vor und nach der Behandlung in der Kontrollgruppe ähnlich (p > 0,05 für alle). Die mittleren Vorbehandlungswerte all dieser Parameter waren signifikant niedriger in der Studiengruppe im Vergleich zur Kontrollgruppe (p < 0,05 für alle), mit Ausnahme der RNFLT-, GCL-IPL-Dickenmessungen (p > 0,05 für alle), während die Mittelwerte der Nachbehandlungswerte all dieser Parameter in beiden Gruppen in Monat 12 ähnlich waren (p > 0,05 für alle).

Schlussfolgerung Die rhGH-Ersatzbehandlung im Kindesalter kann eine wichtige Rolle bei der Entwicklung der neuralen Netzhaut spielen und kann bei Messungen des vorderen Segments, der RNFLT und der ChT wirksam sein.



Publication History

Received: 12 April 2022

Accepted: 07 February 2023

Article published online:
04 April 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Lindsay R, Feldkamp M, Harris D. et al. Utah Growth Study: growth standards and the prevalence of growth hormone deficiency. J Pediatr 1994; 125: 29-35
  • 2 Vimpani GV, Vimpani AF, Lidgard GP. et al. Prevalence of severe growth hormone deficiency. Br Med J 1977; 2: 427-430
  • 3 Parentin F, Pensiero S. Central corneal thickness in children with growth hormone deficiency. Acta Ophthalmol 2010; 88: 692-694
  • 4 Ciresi A, Amato MC, Morreale D. et al. Cornea in acromegalic patients as a possible target of growth hormone action. J Endocrinol Invest 2011; 34: e30-35
  • 5 Harvey S, Baudet ML, Sanders EJ. Growth hormone and developmental ocular function: clinical and basic studies. Pediatr Endocrinol Rev 2007; 5: 510-515
  • 6 Sanders EJ, Parker E, Harvey S. Endogenous growth hormone in human retinal ganglion cells correlates with cell survival. Mol Vis 2009; 15: 920-926
  • 7 Richmond E, Rogol AD. Treatment of growth hormone deficiency in children, adolescents and at the transitional age. Best Pract Res Clin Endocrinol Metab 2016; 30: 749-755
  • 8 Parentin F, Tonini G, Perissutti P. Refractive evaluation in children with growth defect. Curr Eye Res 2004; 28: 11-15
  • 9 Mutz I, Millner M, Borkenstein M. [Optic nerve hypoplasia and growth hormone deficiency: de Morsierʼs syndrome]. Wien Klin Wochenschr 1984; 96: 432-435
  • 10 Willnow S, Kiess W, Butenandt O. et al. Endocrine disorders in septo-optic dysplasia (De Morsier syndrome) -evaluation and follow up of 18 patients. Eur J Pediatr 1996; 155: 179-184
  • 11 Modanlou HD, Gharraee Z, Hasan J. et al. Ontogeny of VEGF, IGF-I, and GH in neonatal rat serum, vitreous fluid, and retina from birth to weaning. Invest Ophthalmol Vis Sci 2006; 47: 738-744
  • 12 Harvey S, Kakebeeke M, Murphy AE. et al. Growth hormone in the nervous system: autocrine or paracrine roles in retinal function?. Can J Physiol Pharmacol 2003; 81: 371-384
  • 13 Takeuchi S, Haneda M, Teshigawara K. et al. Identification of a novel GH isoform: a possible link between GH and melanocortin systems in the developing chicken eye. Endocrinology 2001; 142: 5158-5166
  • 14 Harvey S, Johnson CD, Sanders EJ. Growth hormone in neural tissues of the chick embryo. J Endocrinol 2001; 169: 487-498
  • 15 García-Aragón J, Lobie PE, Muscat GE. et al. Prenatal expression of the growth hormone (GH) receptor/binding protein in the rat: a role for GH in embryonic and fetal development?. Development 1992; 114: 869-876
  • 16 Serrano J, Shuldiner AR, Roberts CT. et al. The insulin-like growth factor I (IGF-I) gene is expressed in chick embryos during early organogenesis. Endocrinology 1990; 127: 1547-1549
  • 17 Scavo LM, Serrano J, Roth J. et al. Genes for the insulin receptor and the insulin-like growth factor I receptor are expressed in the chicken embryo blastoderm and throughout organogenesis. Biochem Biophys Res Commun 1991; 176: 1393-1401
  • 18 Calvaruso G, Vento R, Giuliano M. et al. Insulin-like growth factors in chick embryo retina during development. Regul Pept 1996; 61: 19-25
  • 19 Hellström A, Svensson E, Carlsson B. et al. Reduced retinal vascularization in children with growth hormone deficiency. J Clin Endocrinol Metab 1999; 84: 795-798
  • 20 Nalcacioglu-Yuksekkaya P, Sen E, Yilmaz S. et al. Decreased retinal nerve fiber layer thickness in patients with congenital isolated growth hormone deficiency. Eur J Ophthalmol 2014; 24: 873-878
  • 21 Nalcacioglu-Yuksekkaya P, Sen E, Elgin U. et al. Corneal properties in children with congenital isolated growth hormone deficiency. Int J Ophthalmol 2014; 7: 317-320
  • 22 Read SA, Alonso-Caneiro D, Vincent SJ. et al. Peripapillary choroidal thickness in childhood. Exp Eye Res 2015; 135: 164-173
  • 23 Parentin F, Perissutti P. Congenital growth hormone deficiency and eye refraction: a longitudinal study. Ophthalmologica 2005; 219: 226-231
  • 24 Cuthbertson RA, Beck F, Senior PV. et al. Insulin-like growth factor II may play a local role in the regulation of ocular size. Development 1989; 107: 123-130
  • 25 Baudet ML, Hassanali Z, Sawicki G. et al. Growth hormone action in the developing neural retina: a proteomic analysis. Proteomics 2008; 8: 389-401
  • 26 Robertson JG, Walton PE, Dunshea F. et al. Growth hormone but not insulin-like growth factor-I improves wound strength in pigs. Wound Repair Regen 1997; 5: 168-174
  • 27 Bitar MS. Insulin-like growth factor-1 reverses diabetes-induced wound healing impairment in rats. Horm Metab Res 1997; 29: 383-386
  • 28 Dunaiski V, Belford DA. Contribution of circulating IGF-I to wound repair in GH-treated rats. Growth Horm IGF Res 2002; 12: 381-387
  • 29 Rees RS, Robson MC, Smiell JM. et al. Becaplermin gel in the treatment of pressure ulcers: A phase II randomized, double-blind, placebo-controlled study. Wound Repair Regen 1999; 7: 141-147