Synthesis 2024; 56(04): 611-638
DOI: 10.1055/a-2060-3488
special topic
Synthetic Development of Key Intermediates and Active Pharmaceutical Ingredients (APIs)

Pd-Nanoparticles-Catalyzed C(sp2)–H Arylation for the Synthesis of Functionalized Heterocycles: Recent Progress and Prospects

,
,
,
Firojkhan Rajekhan Pathan
,
Gowri Sankar J.
,
Harika Juloori
,
Sainath Ganesh Gadewar
,
S.S., M.M., L.S., F.R.P., G.S.J., H.J, and S.G.G are grateful to the Department of Pharmaceuticals (DoP), Govt. of India for their fellowships.


Abstract

Transition-metal-nanoparticles-catalyzed C–H activation/functionalization is a prominent topic in contemporary research, enabling the functionalization of privileged heterocyclic scaffolds that hold a significant space in the scientific community due to their immense applications in materials science and in medicinal, natural product, and agricultural chemistry. Among transition-metal-based nanoparticles, Pd nanoparticle catalysis has emerged as the most attractive tool for promoting a wide array of practical synthetic transformations of heterocycles. In the last few years, the catalytic application of Pd nanoparticles in C–H functionalization has gained popularity in generating relatively inaccessible bonds with a high degree of selectivity and efficiency via the activation of surface metal atoms at the nanoscale level. The quantum size effect of nanoparticles offers a large surface area, with typically many easily accessible active sites/unit areas. These unique characteristics of nanoparticles are considered primary factors of enhanced catalytic activity compared to bulk materials. The nanoparticle catalysts anchored on solid-supports plus unsupported types (e.g., magnetic nanoparticles) allow easy separation from the reaction mixture, enabling recycling multiple times, which contributes notably to sustainable management and cost efficiency of a production process. In the current review, we discuss Pd-nanoparticles-catalyzed C(sp2)–H arylation for the synthesis of functionalized heterocycles, covering literature reports from 2010 to 2021. The preparation of Pd nanoparticles and the mechanistic realizations in their corresponding reactions are also explained briefly.

1 Introduction

2 Arylation of Heterocyclic Scaffolds

2.1 Synthesis of Functionalized Indole Derivatives

2.2 Synthesis of Functionalized (Benzo)thiazole/Benzoxazole Derivatives

2.3 Synthesis of Functionalized Triazoles

2.4 Synthesis of Functionalized Pyridines and Related Scaffolds

2.5 Synthesis of Functionalized Furan, Thiophene and N-Methylpyrrole Scaffolds

2.6 Synthesis of Functionalized Multiple Heterocycles via Single-Step Strategies

3 Conclusions



Publication History

Received: 31 January 2023

Accepted after revision: 22 March 2023

Accepted Manuscript online:
22 March 2023

Article published online:
03 May 2023

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • Selected representative examples:
    • 1a Palani V, Perea MA, Gardner KE, Sarpong R. Chem. Sci. 2021; 12: 1528
    • 1b Shiri P. Mini Rev. Med. Chem. 2021; 21: 536
    • 1c Baudoin O. Angew. Chem. Int. Ed. 2020; 59: 17798
    • 1d Li B, Ali AI. M, Ge H. Chem 2020; 6: 2591
    • 1e Abrams DJ, Provencher PA, Sorensen EJ. Chem. Soc. Rev. 2018; 47: 8925
    • 1f Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
    • 1g Joule JA. Natural Products Containing Nitrogen Heterocycles–Some Highlights 1990–2015. In Advances in Heterocyclic Chemistry, Vol. 119. Scriven EF. V, Ramsden CA. Elsevier; Amsterdam: 2016: 81
    • 1h Chen D, Su S.-J, Cao Y. J. Mater. Chem. C 2014; 2: 9565
    • 1i Lamberth C. Pest Manag. Sci. 2013; 69: 1106
    • 1j Bioactive Heterocyclic Compound Classes: Agrochemicals . Lamberth C, Dinges J. Wiley-VCH; Weinheim: 2012
    • 1k McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 1l Fürstner A. Angew. Chem. Int. Ed. 2003; 42: 3582
    • 1m Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
    • 2a Hardy MA, Wright BA, Bachman JL, Boit TB, Haley HM. S, Knapp RR, Lusi RF, Okada T, Tona V, Garg NK, Sarpong R. ACS Cent. Sci. 2020; 6: 1017
    • 2b Campos KR, Coleman PJ, Alvarez JC, Dreher SD, Garbaccio RM, Terrett NK, Tillyer RD, Truppo MD, Parmee ER. Science 2019; 363: eaat0805
    • 2c Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
    • 2d Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
  • 3 Dalton T, Faber T, Glorius F. ACS Cent. Sci. 2021; 7: 245
    • 4a Grover J, Prakash G, Goswami N, Maiti D. Nat. Commun. 2022; 13: 1085
    • 4b Seth K. Innate Directing Group-Guided Transition Metal-Catalyzed C(sp2)–H Activation: Functionalization of Biosignificant Heterocyclic Scaffolds. In Handbook of CH-Functionalization. Maiti D. Wiley-VCH; Weinheim: 2022. Chap. 158
    • 4c Hooshmand SE, Heidari B, Sedghi R, Varma RS. Green Chem. 2019; 21: 381
    • 4d Corbet J.-P, Mignani G. Chem. Rev. 2006; 106: 2651

      Selected representative reviews:
    • 5a Gandeepan P, Müller T, Zell D, Cera G, Warratz S, Ackermann L. Chem. Rev. 2019; 119: 2192
    • 5b Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
    • 5c Wu Y, Wang J, Mao F, Kwong FY. Chem. Asian J. 2014; 9: 26
    • 5d Mousseau JJ, Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 5e Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 5f Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 5g Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 5h Chiusoli GP, Catellani M, Costa M, Motti E, Ca’ ND, Maestri G. Coord. Chem. Rev. 2010; 254: 456
    • 5i Satoh T, Miura M. Chem. Eur. J. 2010; 16: 11212
    • 5j Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 5k Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
  • 6 Santoro S, Kozhushkov SI, Ackermann L, Vaccaro L. Green Chem. 2016; 18: 3471
    • 7a Thomé I, Nijs A, Bolm C. Chem. Soc. Rev. 2012; 41: 979
    • 7b Hess TM, Owens JS, Reinhardt LG. Ind. Eng. Chem. Anal. Ed. 1939; 11: 646
  • 8 Garrett CE, Prasad K. Adv. Synth. Catal. 2004; 346: 889
    • 9a Chakravarty R, Chakraborty S, Dash A, Pillai MR. A. Nucl. Med. Biol. 2013; 40: 197
    • 9b Oster O, Dahm M, Oelert H, Prellwitz W. Clin. Chem. 1989; 35: 851
  • 10 Hübner S, de Vries JG, Farina V. Adv. Synth. Catal. 2016; 358: 3

    • Selected representative examples:
    • 11a Collins KD, Honeker R, Vásquez-Céspedes S, Tang D.-TD, Glorius F. Chem. Sci. 2015; 6: 1816
    • 11b Cano R, Schmidt AF, McGlacken GP. Chem. Sci. 2015; 6: 5338
    • 11c Reay AJ, Fairlamb IJ. S. Chem. Commun. 2015; 51: 16289
    • 11d Djakovitch L, Felpin F.-X. ChemCatChem 2014; 6: 2175
    • 11e Honraedt A, Callonnec FL, Grognec EL, Fernandez V, Felpin F.-X. J. Org. Chem. 2013; 78: 4604
    • 11f Neal LM, Hagelin-Weaver HE. J. Mol. Catal. A: Chem. 2008; 284: 141
    • 11g Parisien M, Valette D, Fagnou K. J. Org. Chem. 2005; 70: 7578
    • 12a Anastas P, Eghbali N. Chem. Soc. Rev. 2010; 39: 301
    • 12b Horváth IT, Anastas P. Chem. Rev. 2007; 107: 2169
    • 12c Tucker JL. Org. Process Res. Dev. 2006; 10: 315
    • 12d Tundo P, Anastas P, Black DS, Breen J, Collins T, Memoli S, Miyamoto J, Polyakoff M, Tumas W. Pure Appl. Chem. 2000; 72: 1207
    • 12e Wilson K, Clark JH. Pure Appl. Chem. 2000; 72: 1313
    • 12f Clark JH. Green Chem. 1999; 1: 1
  • 13 Piermatti O, Abu-Reziq R, Vaccaro L. Strategies to Immobilized Catalysts: A Key Tool for Modern Chemistry. In Catalyst Immobilization: Methods and Applications, Benaglia M., Puglisi A. (Eds.), Wiley-VCH: Weinheim, 2020 . 1–22;
    • 14a Nanocatalysis: Applications and Technologies . Calvino-Casilda V, López-Peinado AJ, Martín-Aranda RM, Mayoral EP. CRC Press; Boca Raton: 2019
    • 14b An K, Alayoglu S, Ewers T, Somorjai GA. J. Colloid Interface Sci. 2012; 373: 1
    • 14c Bell AT. Science 2003; 299: 1688
    • 14d Nanoparticles and Catalysis . Astruc D. Wiley-VCH; Weinheim: 2008

      Selected representative examples:
    • 15a Parvulescu VI. Advances in Heterogeneous Catalysis, Concepts of Nanocatalysis and Single-Atom Catalysis. In Advanced Heterogeneous Catalysts Volume 1: Applications at the Nano-Scale. Putla S, Singh L. ACS Symposium Series 1359; American Chemical Society; Washington DC: 2021. Chap. 1
    • 15b Liu L, Corma A. Chem. Rev. 2018; 118: 4981
    • 15c Schätz A, Reiser O, Stark WJ. Chem. Eur. J. 2010; 16: 8950
    • 16a Astruc D. Inorg. Chem. 2007; 46: 1884
    • 16b Astruc D, Lu F, Aranzaes JR. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 16c Roucoux A, Schulz J, Patin H. Chem. Rev. 2002; 102: 3757
    • 16d Reetz MT, Maase M. Adv. Mater. 1999; 11: 773
    • 16e Liz-Marzán LM, Lado-Touriño I. Langmuir 1996; 12: 3585
    • 17a Ouyang R, Liu J.-X, Li W.-X. J. Am. Chem. Soc. 2013; 135: 1760
    • 17b Cushing BL, Kolesnichenko VL, O’Connor CJ. Chem. Rev. 2004; 104: 3893
    • 17c Roosen AR, Carter WC. Physica A 1998; 261: 232
    • 17d Sugimoto S. J. Colloid Interface Sci. 1978; 63: 16
    • 17e Dadyburjor DB, Ruckenstein E. J. Cryst. Growth 1977; 40: 279
    • 17f Lifshitz IM, Slyozov VV. J. Phys. Chem. Solids 1961; 19: 35
    • 18a Peter M, Camacho JM. F, Adamovski S, Ono LK, Dostert K.-H, O’Brien CP, Cuenya BR, Schauermann S, Freund H.-J. Angew. Chem. Int. Ed. 2013; 52: 5175
    • 18b Polshettiwar V, Varma RS. Green Chem. 2010; 12: 743
    • 18c Doyle AM, Shaikhutdinov SK, Jackson SD, Freund H.-J. Angew. Chem. Int. Ed. 2003; 42: 5240
    • 18d Schmid G, Maihack V, Lantermann F, Peschel S. J. Chem. Soc., Dalton Trans. 1996; 589
  • 19 Zhou K, Li Y. Angew. Chem. Int. Ed. 2012; 51: 602
    • 20a Li G, Kobayashi H, Dekura S, Ikeda R, Kubota Y, Kato K, Takata M, Yamamoto T, Matsumura S, Kitagawa H. J. Am. Chem. Soc. 2014; 136: 10222
    • 20b Xia Y, Xiong Y, Lim B, Skrabalak SE. Angew. Chem. Int. Ed. 2009; 48: 60
    • 20c Choudary BM, Ranganath KV. S, Pal U, Kantam ML, Sreedhar B. J. Am. Chem. Soc. 2005; 127: 13167
    • 20d Choudary BM, Kantam ML, Ranganath KV. S, Mahendar K, Sreedhar B. J. Am. Chem. Soc. 2004; 126: 3396

      Selected representative examples:
    • 21a Purohit P, Seth K, Kumar A, Chakraborti AK. ACS Catal. 2017; 7: 2452
    • 21b Gawande MB, Goswami A, Felpin F.-X, Asefa T, Huang X, Silva R, Zou X, Zboril R, Varma RS. Chem. Rev. 2016; 116: 3722
    • 21c Seth K, Raha Roy S, Kumar A, Chakraborti AK. Catal. Sci. Technol. 2016; 6: 2892
    • 21d Seth K, Purohit P, Chakraborti AK. Org. Lett. 2014; 16: 2334
    • 21e Seth K, Raha Roy S, Kommi DN, Pipaliya BV, Chakraborti AK. J. Mol. Catal. A: Chem. 2014; 392: 164
    • 21f Seth K, Raha Roy S, Pipaliya BV, Chakraborti AK. Chem. Commun. 2013; 49: 5886
    • 21g Chng LL, Erathodiyil N, Ying JY. Acc. Chem. Res. 2013; 46: 1825
    • 21h Moreno-Mañas M, Pleixats R. Acc. Chem. Res. 2003; 36: 638
    • 21i Reetz MT, Westerman E. Angew. Chem. Int. Ed. 2000; 39: 165

      Selected representative examples:
    • 22a Asensio JM, Bouzouita D, van Leeuwen PW. N. M, Chaudret B. Chem. Rev. 2020; 120: 1042
    • 22b Jayarajan R, Kumar R, Gupta J, Dev G, Kadu P, Chatterjee D, Bahadur D, Maiti D, Maji SK. J. Mater. Chem. A 2019; 7: 4486
    • 22c Seth K, Roy SR, Chakraborti AK. Chem. Commun. 2016; 52: 922
    • 22d Rosario AR, Casola KK, Oliveira CE. S, Zeni G. Adv. Synth. Catal. 2013; 355: 2960
    • 22e Chng LL, Zhang J, Yang J, Amoura M, Ying JY. Adv. Synth. Catal. 2011; 353: 2988
    • 22f Adak L, Bhadra S, Ranu BC. Tetrahedron Lett. 2010; 51: 3811
    • 24a Sankar M, He Q, Engel RV, Sainna MA, Logsdail AJ, Roldan A, Willock DJ, Agarwal N, Kiely CJ, Hutchings GJ. Chem. Rev. 2020; 120: 3890
    • 24b Sápi A, Dobó DG, Sebők D, Halasi G, Juhász KL, Szamosvölgyi Á, Pusztai P, Varga E, Kálomista I, Galbács G, Kukovecz Á, Kónya Z. J. Phys. Chem. C 2017; 121: 5130
    • 24c Munnik P, de Jongh PE, de Jong KP. Chem. Rev. 2015; 115: 6687
    • 24d Campelo JM, Luna D, Luque R, Marinas JM, Romero AA. ChemSusChem 2009; 2: 18
    • 25a Copéret C, Comas-Vives A, Conley MP, Estes DP, Fedorov A, Mougel V, Nagae H, Núñez-Zarur F, Zhizhko PA. Chem. Rev. 2016; 116: 323
    • 25b Gleeson O, Davies G.-L, Peschiulli A, Tekoriute R, Gun’ko YK, Connon SJ. Org. Biomol. Chem. 2011; 9: 7929
    • 26a Héroguel F, Siddiqi G, Detwiler MD, Zemlyanov DY, Safonova OV, Copéret C. J. Catal. 2015; 321: 81
    • 26b Héroguel F, Gebert D, Detwiler MD, Zemlyanov DY, Baudouin D, Copéret C. J. Catal. 2014; 316: 260
    • 26c Mishra DK, Dabbawala AA, Hwang J.-S. J. Mol. Catal. A: Chem. 2013; 376: 63
    • 26d Gajan D, Guillois K, Delichère P, Basset J.-M, Candy J.-P, Caps V, Copéret C, Lesage A, Emsley L. J. Am. Chem. Soc. 2009; 131: 14667
    • 27a Bai C, Liu M. Angew. Chem. Int. Ed. 2013; 52: 2678
    • 27b Ferrando R, Jellinek J, Johnston RL. Chem. Rev. 2008; 108: 845
    • 27c Watari N, Ohnishi S. Phys. Rev. B 1998; 58: 1665
    • 27d Yoffe AD. Adv. Phys. 1993; 42: 173
    • 27e Che M, Bennett CO. Adv. Catal. 1989; 36: 55
    • 27f Scott BA, Plecenik RM, Cargill GS. III, McGuire TR, Herd SR. Inorg. Chem. 1980; 19: 1252
    • 29a Leong SS, Ahmad Z, Low SC, Camacho J, Faraudo J, Lim JK. Langmuir 2020; 36: 8033
    • 29b Wang D, Astruc D. Chem. Rev. 2014; 114: 6949
    • 29c Stephens JR, Beveridge JS, Williams ME. Phys. Chem. Chem. Phys. 2012; 14: 3280
    • 29d Saha A, Leazer J, Varma RS. Green Chem. 2012; 14: 67
    • 29e Shylesh S, Schünemann V, Thiel WR. Angew. Chem. Int. Ed. 2010; 49: 3428
    • 30a Li Y, Liu JH.-C, Witham CA, Huang W, Marcus MA, Fakra SC, Alayoglu P, Zhu Z, Thompson CM, Arjun A, Lee K, Gross E, Toste FD, Somorjai GA. J. Am. Chem. Soc. 2011; 133: 13527
    • 30b Huang W, Liu JH.-C, Alayoglu P, Li Y, Witham CA, Tsung C.-K, Toste FD, Somorjai GA. J. Am. Chem. Soc. 2010; 132: 16771
    • 30c Arena F, Giovenco R, Torre T, Venuto A, Parmaliana A. Appl. Catal. B Environ. 2003; 45: 51
    • 30d Carlini C, Girolamo MD, Macinai A, Marchionna M, Noviello M, Galletti AM. R, Sbrana G. J. Mol. Catal. A: Chem. 2003; 204-205: 721
    • 30e Blasio ND, Wright MR, Tempesti E, Mazzocchia C, Cole-Hamilton DJ. J. Organomet. Chem. 1998; 551: 229
    • 31a Gruttadauria M, Giacalone F, Noto R. Green Chem. 2013; 15: 2608
    • 31b Witham CA, Huang W, Tsung C.-K, Kuhn JN, Somorjai GA, Toste FD. Nat. Chem. 2010; 2: 36
    • 31c Jaska CA, Manners I. J. Am. Chem. Soc. 2004; 126: 9776
    • 31d Davies IW, Matty L, Hughes DL, Reider PJ. J. Am. Chem. Soc. 2001; 123: 10139
  • 32 Rampino LD, Nord FF. J. Am. Chem. Soc. 1941; 63: 2745

    • Selected representative examples:
    • 33a Yamamoto K, Imaoka T, Tanabe M, Kambe T. Chem. Rev. 2020; 120: 1397
    • 33b Favier I, Pla D, Gómez M. Chem. Rev. 2020; 120: 1146
    • 33c Axet MR, Philippot K. Chem. Rev. 2020; 120: 1085
    • 33d Gellé A, Jin T, de la Garza L, Price GD, Besteiro LV, Moores A. Chem. Rev. 2020; 120: 986
    • 33e Bihani M, Bora PP, Nachtegaal M, Jasinski JB, Plummer S, Gallou F, Handa S. ACS Catal. 2019; 9: 7520
  • 34 Hartings MR. Nat. Chem. 2012; 4: 764
    • 35a Saha D, Mukhopadhyay C. Curr. Organocatal. 2019; 6: 79
    • 35b Pla D, Gómez M. ACS Catal. 2016; 6: 3537

      Selected representative examples:
    • 36a Nisha, Singh S, Sharma N, Chandra R. Org. Chem. Front. 2022; 9: 3624
    • 36b Cacchi S, Fabrizi G. Chem. Rev. 2011; 111: PR215
    • 36c Joucla L, Djakovitch L. Adv. Synth. Catal. 2009; 351: 673
    • 36d Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
    • 36e Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
    • 36f Cacchi S, Fabrizi G. Chem. Rev. 2005; 105: 2873

      Selected representative examples:
    • 37a Gao Y, Zhu W, Yin L, Dong B, Fu J, Ye Z, Xue F, Jiang C. Tetrahedron Lett. 2017; 58: 2213
    • 37b Lebrasseur N, Larrosa I. Adv. Heterocycl. Chem. 2012; 105: 309
    • 37c Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 37d Potavathri S, Pereira KC, Gorelsky SI, Pike A, LeBris AP, DeBoef B. J. Am. Chem. Soc. 2010; 132: 14676
    • 37e Lebrasseur N, Larrosa I. J. Am. Chem. Soc. 2008; 130: 2926
    • 37f Deprez NR, Kalyani D, Krause A, Sanford MS. J. Am. Chem. Soc. 2006; 128: 4972
    • 37g Lane BS, Brown MA, Sames D. J. Am. Chem. Soc. 2005; 127: 8050
    • 38a McElroy CR, Constantinou A, Jones LC, Summerton L, Clark JH. Green Chem. 2015; 17: 3111
    • 38b Prat D, Hayler J, Wells A. Green Chem. 2014; 16: 4546
    • 38c Capello C, Fischer U, Hungerbühler K. Green Chem. 2007; 9: 927
  • 39 Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry DA, Stefaniak M. Green Chem. 2008; 10: 31

    • Selected representative examples:
    • 40a Scalambra F, Lorenzo-Luis P, de los Rios I, Romerosa A. Coord. Chem. Rev. 2021; 443: 213997
    • 40b Kommi DN, Jadhavar PS, Kumar D, Chakraborti AK. Green Chem. 2013; 15: 798
    • 40c Kommi DN, Kumar D, Seth K, Chakraborti AK. Org. Lett. 2013; 15: 1158
    • 40d Kommi DN, Kumar D, Chakraborti AK. Green Chem. 2013; 15: 756
    • 40e Kumar D, Seth K, Kommi DN, Bhagat S, Chakraborti AK. RSC Adv. 2013; 3: 15157
    • 40f Hervés P, Pérez-Lorenzo M, Liz-Marzán LM, Dzubiella J, Lub Y, Ballauf M. Chem. Soc. Rev. 2012; 41: 5577
    • 40g Kommi DN, Kumar D, Bansal R, Chebolu R, Chakraborti AK. Green Chem. 2012; 14: 3329
    • 40h Norcott P, Spielman C, McErlean CS. P. Green Chem. 2012; 14: 605
    • 40i Zheng Y, Zhang J. ChemPhysChem 2010; 11: 65
    • 40j Phippen CB. W, Beattie JK, McErlean CS. P. Chem. Commun. 2010; 46: 8234
    • 40k Beattie JK, McErlean CS. P, Phippen CB. W. Chem. Eur. J. 2010; 16: 8972
    • 40l Lamblin M, Nassar-Hardy L, Hierso J.-C, Fouquet E, Felpin F.-X. Adv. Synth. Catal. 2010; 352: 33

      Selected representative reviews:
    • 41a Zhu Q.-L, Xu Q. Chem. Soc. Rev. 2014; 43: 5468
    • 41b Dhakshinamoorthy A, Garcia H. Chem. Soc. Rev. 2012; 41: 5262
    • 41c Xuan W, Zhu C, Liu Y, Cui Y. Chem. Soc. Rev. 2012; 41: 1677
    • 41d Yoon M, Srirambalaji R, Kim K. Chem. Rev. 2012; 112: 1196
    • 41e Corma A, García H, Llabrés i Xamena FX. Chem. Rev. 2010; 110: 4606
    • 41f Lee JY, Farha OK, Roberts J, Scheidt KA, Nguyen SB. T, Hupp JT. Chem. Soc. Rev. 2009; 38: 1450
    • 42a Tristany M, Courmarcel J, Dieudonné P, Moreno-Mañas M, Pleixats R, Rimola A, Sodupe M, Villarroya S. Chem. Mater. 2006; 18: 716
    • 42b Tristany M, Chaudret B, Dieudonné P, Guari Y, Lecante P, Matsura V, Moreno-Mañas M, Philippot K, Pleixats R. Adv. Funct. Mater. 2006; 16: 2008
    • 43a Shintaku H, Nakajima K, Kitano M, Hara M. Chem. Commun. 2014; 50: 13473
    • 43b Minakata S, Komatsu M. Chem. Rev. 2009; 109: 711
  • 44 Huang Y.-B, Shen M, Wang X, Huang P, Chen R, Lin Z.-J, Cao R. J. Catal. 2016; 333: 1
  • 45 Mondloch JE, Bury W, Fairen-Jimenez D, Kwon S, DeMarco EJ, Weston MH, Sarjeant AA, Nguyen SB. T, Stair PC, Snurr RQ, Farha OK, Hupp JT. J. Am. Chem. Soc. 2013; 135: 10294
  • 46 Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SC. J, Wei WD, Yang Y, Hupp JT, Huo F. Nat. Chem. 2012; 4: 310
    • 47a Simon M.-O, Li C.-J. Chem. Soc. Rev. 2012; 41: 1415
    • 47b Herrerías CI, Yao X, Li Z, Li C.-J. Chem. Rev. 2007; 107: 2546
  • 48 Joucla L, Batail N, Djakovitch L. Adv. Synth. Catal. 2010; 352: 2929
  • 49 Huang Y, Lin Z, Cao R. Chem. Eur. J. 2011; 17: 12706

    • Selected representative examples:
    • 50a Niknam E, Panahi F, Daneshgar F, Bahrami F, Khalafi-Nezhad A. ACS Omega 2018; 3: 17135
    • 50b Bernt S, Guillerm V, Serre C, Stock N. Chem. Commun. 2011; 47: 2838
    • 50c Ehrenmann J, Henninger SK, Janiak C. Eur. J. Inorg. Chem. 2011; 471
    • 50d Kockrick E, Lescouet T, Kudrik EV, Sorokin AB, Farrusseng D. Chem. Commun. 2011; 47: 1562
    • 50e Zalomaeva OV, Kovalenko KA, Chesalov YA, Mel’gunov MS, Zaikovskii VI, Kaichev VV, Sorokin AB, Kholdeeva OA, Fedin VP. Dalton Trans. 2011; 40: 1441
    • 50f Gu Z.-Y, Yan X.-P. Angew. Chem. Int. Ed. 2010; 49: 1477
    • 51a Wang X, Gribkov DV, Sames D. J. Org. Chem. 2007; 72: 1476
    • 51b Touré BB, Lane BS, Sames D. Org. Lett. 2006; 8: 1979
  • 52 Huheey JE, Keiter EA, Keiter RL. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed. Pearson Education Inc; Singapore: 2004. Chap. 9
  • 53 Yuan B, Pan Y, Li Y, Yin B, Jiang H. Angew. Chem. Int. Ed. 2010; 49: 4054
  • 54 Pan Y, Yuan B, Li Y, He D. Chem. Commun. 2010; 46: 2280
    • 55a da Silva FP, Fiorio JL, Rossi LM. ACS Omega 2017; 2: 6014
    • 55b Dhiman M, Chalke B, Polshettiwar V. ACS Sustainable Chem. Eng. 2015; 3: 3224
    • 55c Ji Y, Jain S, Davis RJ. J. Phys. Chem. B 2005; 109: 17232
    • 55d Köhler K, Heidenreich RG, Krauter JG. E, Pietsch J. Chem. Eur. J. 2002; 8: 622
    • 56a Yang S.-D, Sun C.-L, Fang Z, Li B.-J, Li Y.-Z, Shi Z.-J. Angew. Chem. Int. Ed. 2008; 47: 1473
    • 56b Zhao J, Zhang Y, Cheng K. J. Org. Chem. 2008; 73: 7428
    • 56c Stuart DR, Villemure E, Fagnou K. J. Am. Chem. Soc. 2007; 129: 12072
    • 56d Lane BS, Sames D. Org. Lett. 2004; 6: 2897
  • 57 Wang L, Yi W.-B, Cai C. Chem. Commun. 2011; 47: 806

    • Selected representative examples:
    • 58a Liu Z, Li Q, Yang C, Zheng X, Wu D, Gao G, Lan J. Chem. Commun. 2022; 58: 7042
    • 58b Modha SG, Greaney MF. J. Am. Chem. Soc. 2015; 137: 1416
    • 58c Tang D.-TD, Collins KD, Ernst JB, Glorius F. Angew. Chem. Int. Ed. 2014; 53: 1809
    • 58d Ackermann L, Dell’Acqua M, Fenner S, Vicente R, Sandmann R. Org. Lett. 2011; 13: 2358
    • 58e Phipps RJ, Grimster NP, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 8172
  • 59 Malmgren J, Nagendiran A, Tai C.-W, Bäckvall J.-E, Olofsson B. Chem. Eur. J. 2014; 20: 13531
  • 60 Taguchi A, Schath F. Microporous Mesoporous Mater. 2005; 77: 1
    • 61a Levy-Ontman O, Stamker E, Wolfson A. Metals 2021; 11: 1443
    • 61b Gruber-Woelfler H, Radaschitz PF, Feenstra PW, Haas W, Khinast JG. J. Catal. 2012; 286: 30
  • 62 Kalyani D, Deprez NR, Desai LV, Sanford MS. J. Am. Chem. Soc. 2005; 127: 7330
    • 63a Zhou F, Hearne Z, Li C.-J. Curr. Opin. Green Sustainable Chem. 2019; 18: 118
    • 63b Castro-Puyana M, Marina ML, Plaza M. Curr. Opin. Green Sustainable Chem. 2017; 5: 31
    • 64a Zuo Y.-J, Qu J. J. Org. Chem. 2014; 79: 6832
    • 64b Gawande MB, Bonifácio VD. B, Luque R, Branco PS, Varma RS. Chem. Soc. Rev. 2013; 42: 5522
    • 64c Butler RN, Coyne AG. Chem. Rev. 2010; 110: 6302
    • 65a Kaplaneris N, Vilches-Herrera M, Wu J, Ackermann L. ACS Sustainable Chem. Eng. 2022; 10: 6871
    • 65b Li B, Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 65c Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 65d Fischmeister C, Doucet H. Green Chem. 2011; 13: 741
  • 66 Duan L, Fu R, Zhang B, Shi W, Chen S, Wan Y. ACS Catal. 2016; 6: 1062
    • 67a Duan L, Fu R, Xiao Z, Zhao Q, Wang J.-Q, Chen S, Wan Y. ACS Catal. 2015; 5: 575
    • 67b Wang S, Zhao Q, Wei H, Wang J.-Q, Cho M, Cho HS, Terasaki O, Wan Y. J. Am. Chem. Soc. 2013; 135: 11849
    • 67c Wan Y, Wang H, Zhao Q, Klingstedt M, Terasaki O, Zhao D. J. Am. Chem. Soc. 2009; 131: 4541
    • 68a Zhuang X, Zhao Q, Wan Y. J. Mater. Chem. 2010; 20: 4715
    • 68b Wan Y, Zhang D, Zhai Y, Feng C, Chen J, Li H. Chem. Asian J. 2007; 2: 875
    • 69a Ye R, Zhukhovitskiy AV, Deraedt CV, Toste FD, Somorjai GA. Acc. Chem. Res. 2017; 50: 1894
    • 69b Deraedt C, Ye R, Ralston WT, Toste FD, Somorjai GA. J. Am. Chem. Soc. 2017; 139: 18084
    • 69c Kim K, Jung Y, Lee S, Kim M, Shin D, Byun H, Cho SJ, Song H, Kim H. Angew. Chem. Int. Ed. 2017; 56: 6952
    • 69d Kim M, Lee S, Kim K, Shin D, Kim H, Song H. Chem. Commun. 2014; 50: 14938
  • 70 Shin T, Kim M, Jung Y, Cho SJ, Kim H, Song H. Chem. Commun. 2020; 56: 14404
    • 71a Lee AF, Ellis PJ, Fairlamb IJ. S, Wilson K. Dalton Trans. 2010; 39: 10473
    • 71b Ellis PJ, Fairlamb IJ. S, Hackett SF. J, Wilson K, Lee AF. Angew. Chem. Int. Ed. 2010; 49: 1820
    • 71c Priolkar KR, Bera P, Sarode PR, Hegde MS, Emura S, Kumashiro R, Lalla NP. Chem. Mater. 2002; 14: 2120
    • 72a Silva MP, Saraiva L, Pinto M, Sousa ME. Molecules 2020; 25: 4323
    • 72b Zhang Z, Edkins RM, Nitsch J, Fucke K, Steffen A, Longobardi LE, Stephan DW, Lambert C, Marder TB. Chem. Sci. 2015; 6: 308
    • 72c Hartwig JF. Acc. Chem. Res. 2012; 45: 864
    • 72d Hall DG. Structure, Properties, and Preparation of Boronic Acid Derivatives: Overview of Their Reactions and Applications. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 2nd ed. Hall DG. Wiley-VCH; Weinheim: 2011. Chap. 1
    • 72e Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890

      Selected representative examples:
    • 73a Stephan DW, Erker G. Chem. Sci. 2014; 5: 2625
    • 73b Melen RL. Chem. Commun. 2014; 50: 1161
    • 73c Liedtke R, Fröhlich R, Kehr G, Erker G. Organometallics 2011; 30: 5222
    • 73d Voss T, Sortais J.-B, Fröhlich R, Kehr G, Erker G. Organometallics 2011; 30: 584
    • 73e Berkefeld A, Piers WE, Parvez M. J. Am. Chem. Soc. 2010; 132: 10660
  • 74 Huang Y, Ma T, Huang P, Wu D, Lin Z, Cao R. ChemCatChem 2013; 5: 1877
  • 75 Belluco U, Giustiniani M, Graziani M. J. Am. Chem. Soc. 1967; 89: 6494
    • 76a Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2010; 49: 6877
    • 76b Kirchberg S, Fröhlich R, Studer A. Angew. Chem. Int. Ed. 2009; 48: 4235

      Selected representative examples:
    • 77a Osakada K, Nishihara Y. Dalton Trans. 2022; 51: 777
    • 77b Lennox AJ. J, Lloyd-Jones GC. Chem. Soc. Rev. 2014; 43: 412
    • 77c Molnár Á. Chem. Rev. 2011; 111: 2251
    • 77d Smith KA, Campi EM, Jackson WR, Marcuccio S, Naeslund CG. M, Deacon GB. Synlett 1997; 131
  • 78 Liu C, Zhang H, Shi W, Lei A. Chem. Rev. 2011; 111: 1780
  • 79 Williams TJ, Reay AJ, Whitwood AC, Fairlamb IJ. S. Chem. Commun. 2014; 50: 3052
    • 80a Bruns DL, Musaev DG, Stahl SS. J. Am. Chem. Soc. 2020; 142: 19678
    • 80b Storr TE, Baumann CG, Thatcher RJ, Ornellas SD, Whitwood AC, Fairlamb IJ. S. J. Org. Chem. 2009; 74: 5810
    • 81a Xu D, Yang L, Wang Y, Wang G, Rensing C, Zheng S. Sci. Rep. 2018; 8: 4766
    • 81b Roo JD, Coucke S, Rijckaert H, Keukeleere KD, Sinnaeve D, Hens Z, Martins JC, Driessche IV. Langmuir 2016; 32: 1962
    • 81c Akagi T, Watanabe K, Kim H, Akashi M. Langmuir 2010; 26: 2406
    • 82a Valiente A, Carrasco S, Sanz-Marco A, Tai C.-W, Gómez AB, Martín-Matute B. ChemCatChem 2019; 11: 3933
    • 82b Darzi ER, White BM, Loventhal LK, Zakharov LN, Jasti R. J. Am. Chem. Soc. 2017; 139: 3106
    • 82c Puthiaraj P, Suresh P, Pitchumani K. Green Chem. 2014; 16: 2865
    • 83a Gunathilake C, Manchanda AS, Ghimire P, Kruk M, Jaroniec M. Environ. Sci. Nano 2016; 3: 806
    • 83b Yang X, Tang H, Cao K, Song H, Sheng W, Wu Q. J. Mater. Chem. 2011; 21: 6122
    • 83c Jung JH, Park M, Shinkai S. Chem. Soc. Rev. 2010; 39: 4286
  • 84 Park G, Lee S, Son SJ, Shin S. Green Chem. 2013; 15: 3468
    • 85a Crabtree RH. Chem. Rev. 2012; 112: 1536
    • 85b Reetz MT, de Vries JG. Chem. Commun. 2004; 1559
    • 85c Widegren JA, Finke RG. J. Mol. Catal. A: Chem. 2003; 198: 317
    • 85d de Vries AH. M, Mulders JM. C. A, Mommers JH. M, Henderickx HJ. W, de Vries JG. Org. Lett. 2003; 5: 3285
    • 86a Collins G, Schmidt M, O’Dwyer C, McGlacken G, Holmes JD. ACS Catal. 2014; 4: 3105
    • 86b Xu J, Wilson AR, Rathmell AR, Howe J, Chi M, Wiley BJ. ACS Nano 2011; 5: 6119

      Selected representative examples:
    • 87a Tokala R, Mahajan S, Kiranmai G, Sigalapalli DK, Sana S, John SE, Nagesh N, Shankaraiah N. Bioorg. Chem. 2021; 106: 104481
    • 87b Seth K, Purohit P, Chakraborti AK. Curr. Med. Chem. 2017; 24: 4638
    • 87c Sharma PC, Sinhmar A, Sharma A, Rajak H, Pathak DP. J. Enzyme Inhib. Med. Chem. 2013; 28: 240
    • 87d Hutchinson I, Chua M.-S, Browne HL, Trapani V, Bradshaw TD, Westwell AD, Stevens MF. G. J. Med. Chem. 2001; 44: 1446
    • 87e Kashiyama E, Hutchinson I, Chua M.-S, Stinson SF, Phillips LR, Kaur G, Sausville EA, Bradshaw TD, Westwell AD, Stevens MF. G. J. Med. Chem. 1999; 42: 4172
    • 87f Lau CK, Dufresne C, Gareau Y, Zamboni R, Labelle M, Young RN, Metters KM, Rochette C, Sawyer N, Slipetz DM, Charette L, Jones T, McAuliffe M, McFarlane C, Ford-Hutchinson AW. Bioorg. Med. Chem. Lett. 1995; 5: 1615
    • 87g Palmer PJ, Trigg RB, Warrington JV. J. Med. Chem. 1971; 14: 248
    • 88a Sravani C, Sivaramakrishna A. ChemistrySelect 2017; 2: 5688
    • 88b Kaur N, Singh J, Dhaka G, Rani R, Luxami V. Supramol. Chem. 2015; 27: 453
    • 88c Tang L, Dai X, Zhong K, Wen X, Wu D. J. Fluoresc. 2014; 24: 1487
  • 89 Saha D, Adak L, Ranu BC. Tetrahedron Lett. 2010; 51: 5624
    • 90a Hirabayashi K, Mori A, Kawashima J, Suguro M, Nishihara Y, Hiyama T. J. Org. Chem. 2000; 65: 5342
    • 90b Grove DM, van Koten G, Louwen JN, Noltes JG, Spec AL, Ubbels HJ. C. J. Am. Chem. Soc. 1982; 104: 6609
    • 91a Albano VG, Serio MD, Monari M, Orabona I, Panunzi A, Ruffo F. Inorg. Chem. 2002; 41: 2672
    • 91b Liston DJ, Lee YJ, Scheidt WR, Reed CA. J. Am. Chem. Soc. 1989; 111: 6643
  • 92 Turner GL, Morris JA, Greaney MF. Angew. Chem. Int. Ed. 2007; 46: 7996
  • 93 Labinger JA, Bercaw JE. Nature 2002; 417: 507

    • Selected representative examples:
    • 94a Yan Y, Miao J, Yang Z, Xiao F.-X, Yang HB, Liu B, Yang Y. Chem. Soc. Rev. 2015; 44: 3295
    • 94b Lam E, Luong JH. T. ACS Catal. 2014; 4: 3393
    • 94c Trogadas P, Fuller TF, Strasser P. Carbon 2014; 75: 5
    • 94d Gao J, Zhong J, Bai L, Liu J, Zhao G, Sun X. Sci. Rep. 2014; 4: 3606
    • 94e Pan X, Bao X. Acc. Chem. Res. 2011; 44: 553
    • 94f Serp P, Castillejos E. ChemCatChem 2010; 2: 41
    • 95a Yang WL, Gao Z, Wang J, Ma J, Zhang M, Liu L. ACS Appl. Mater. Interfaces 2013; 5: 5443
    • 95b Gao H, Xiao F, Ching CB, Duan H. ACS Appl. Mater. Interfaces 2012; 4: 7020

      Selected representative examples:
    • 96a Jang L.-W, Shim J, Son DI, Cho H, Zhang L, Zhang J, Menghini M, Locquet J.-P, Seo JW. Sci. Rep. 2019; 9: 12344
    • 96b Luo Y, Wang K, Luo S, Zhao F, Wu H, Jiang K, Li Q, Fan S, Wang J. ACS Appl. Nano Mater. 2018; 1: 2997
    • 96c Lee S.-H, Sridhar V, Jung J.-H, Karthikeyan K, Lee Y.-S, Mukherjee R, Koratkar N, Oh I.-K. ACS Nano 2013; 7: 4242
    • 96d Sridhar V, Kim H.-J, Jung J.-H, Lee C, Park S, Oh I.-K. ACS Nano 2012; 6: 10562
    • 96e Zhao Z, Xu B, Wang L.-M, Zhou X.-F, He J, Liu Z, Wang H.-T, Tian Y. ACS Nano 2011; 5: 7226
    • 96f Dimitrakakis GK, Tylianakis E, Froudakis GE. Nano Lett. 2008; 8: 3166
    • 97a Pudukudy M, Jia Q, Dong Y, Yue Z, Shan S. RSC Adv. 2019; 9: 32517
    • 97b Su J, Cao M, Ren L, Hu C. J. Phys. Chem. C 2011; 115: 14469
    • 98a Li X, Huang L, Zhang J, Chen J. Surf. Interfaces 2022; 31: 102017
    • 98b Cano M, Sbargoud K, Allard E, Larpent C. Green Chem. 2012; 14: 1786
  • 99 Yang F, Feng A, Wang C, Dong S, Chi C, Jia X, Zhang L, Li Y. RSC Adv. 2016; 6: 16911

    • Selected representative examples:
    • 100a Matin MM, Matin P, Rahman MR, Hadda TB, Almalki FA, Mahmud S, Ghoneim MM, Alruwaily M, Alshehri S. Front. Mol. Biosci. 2022; 9: 864286
    • 100b Kantheti S, Narayan R, Raju KV. S. N. RSC Adv. 2015; 5: 3687
    • 100c Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med. Res. Rev. 2008; 28: 278
    • 100d Nandivada H, Jiang X, Lahann J. Adv. Mater. 2007; 19: 2197
    • 100e Costa MS, Boechat N, Rangel ÉA, da Silva FC, de Souza AM. T, Rodrigues CR, Castro HC, Junior IN, Lourenço MC. S, Wardell SM. S. V, Ferreira VF. Bioorg. Med. Chem. 2006; 14: 8644

      Selected representative examples:
    • 101a Dai J, Tian S, Yang X, Liu Z. Front Chem. 2022; 10: in press DOI: 10.3389/fchem.2022.891484.
    • 101b Shiri P, Amani AM, Mayer-Gall T. Beilstein J. Org. Chem. 2021; 17: 1600
    • 101c Nino AD, Maiuolo L, Costanzo P, Algieri V, Jiritano A, Olivito F, Tallarida MA. Catalysts 2021; 11: 1120
  • 102 Keshipour S, Shaabani A. Appl. Organomet. Chem. 2014; 28: 116
    • 103a Li D.-d, Zhang J.-w, Cai C. J. Org. Chem. 2018; 83: 7534
    • 103b Wu X, Lu C, Zhou Z, Yuan G, Xiong R, Zhang X. Environ. Sci. Nano 2014; 1: 71
    • 103c Cirtiu CM, Dunlop-Brière AF, Moores A. Green Chem. 2011; 13: 288
    • 103d Reddy KR, Kumar NS, Reddy PS, Sreedhar B, Kantam ML. J. Mol. Catal. A: Chem. 2006; 252: 12
    • 103e Klemm D, Heublein B, Fink H.-P, Bohn A. Angew. Chem. Int. Ed. 2005; 44: 3358

      Selected representative examples:
    • 104a Sharma M, Prasher P. Synth. Commun. 2022; 52: 1337
    • 104b Kwong HC, Kumar CS. C, Mah SH, Mah YL, Chia TS, Quah CK, Lim GK, Chandraju S. Sci. Rep. 2019; 9: 926
    • 104c Al-Tel TH, Al-Qawasmeh RA, Zaarour R. Eur. J. Med. Chem. 2011; 46: 1874
    • 104d Ducray R, Simpson I, Jung FH, Nissink JW. M, Kenny PW, Fitzek M, Walker GE, Ward LT, Hudson K. Bioorg. Med. Chem. Lett. 2011; 21: 4698
    • 104e Hayakawa M, Kaizawa H, Kawaguchi K.-i, Ishikawa N, Koizumi T, Ohishi T, Yamano M, Okada M, Ohta M, Tsukamoto S.-i, Raynaud FI, Waterfield MD, Parker P, Workman P. Bioorg. Med. Chem. 2007; 15: 403
    • 104f Trapani G, Franco M, Latrofa A, Ricciardi L, Carotti A, Serra M, Sanna E, Biggio G, Liso G. J. Med. Chem. 1999; 42: 3934
    • 104g Almirante L, Polo L, Mugnaini A, Provinciali E, Rugarli P, Biancotti A, Gamba A, Murmann W. J. Med. Chem. 1965; 8: 305

      Selected representative examples:
    • 105a Reen GK, Kumar A, Sharma P. Beilstein J. Org. Chem. 2019; 15: 1612
    • 105b Mu B, Wu Y, Li J, Zou D, Chang J, Wu Y. Org. Biomol. Chem. 2016; 14: 246
    • 105c Koubachi J, Kazzouli SE, Berteina-Raboin S, Mouaddib A, Guillaumet G. J. Org. Chem. 2007; 72: 7650
    • 105d Enguehard C, Renou J.-L, Collot V, Hervet M, Rault S, Gueiffier A. J. Org. Chem. 2000; 65: 6572
    • 106a Bagdi AK, Santra S, Monir K, Hajra A. Chem. Commun. 2015; 51: 1555
    • 106b Choy PY, Luk KC, Wu Y, So CM, Wang L.-l, Kwong FY. J. Org. Chem. 2015; 80: 1457

      Selected representative examples:
    • 107a Kashid AA, Patil DJ, Mali RD, Patil VP, Neethu TV, Meroliya HK, Waghmode SA, Iyer S. Catal. Lett. 2021; 151: 353
    • 107b Maize M, El-Boraey HA, Ayad MI, Holmes JD, Collins G. J. Catal. 2021; 585: 480
    • 107c Zhang J.-W, Li D.-D, Lu G.-P, Deng T, Cai C. ChemCatChem 2018; 10: 4258
    • 107d Rai RK, Tyagi D, Gupta K, Singh SK. Catal. Sci. Technol. 2016; 6: 3341
    • 107e Dhankhar A, Rai RK, Tyagi D, Yao X, Singh SK. ChemistrySelect 2016; 1: 3223
    • 107f Rai RK, Gupta K, Tyagi D, Mahata A, Behrens S, Yang X, Xu Q, Pathak B, Singh SK. Catal. Sci. Technol. 2016; 6: 5567
    • 107g Rai RK, Gupta K, Behrens S, Li J, Xu Q, Singh SK. ChemCatChem 2015; 7: 1806
  • 108 Rodriguez JA, Goodman DW. Science 1992; 257: 897
    • 109a Jiang Y, Li Q, Li X, Wang X, Dong S, Li J, Hou L, Jiao T, Wang Y, Gao F. ACS Omega 2021; 6: 9780
    • 109b Wu S.-Y, Chen H.-T. J. Phys. Chem. C 2017; 121: 14668
    • 109c Wu Y, Wang D, Zhao P, Niu Z, Peng Q, Li Y. Inorg. Chem. 2011; 50: 2046
    • 109d Wang D, Peng Q, Li Y. Nano Res. 2010; 3: 574
    • 109e Son SU, Jang Y, Park J, Na HB, Park HM, Yun HJ, Lee J, Hyeon T. J. Am. Chem. Soc. 2004; 126: 5026
    • 109f Teranishi T, Miyake M. Chem. Mater. 1999; 11: 3414
    • 110a Guo Y, Wang M, Zhu Q, Xiao D, Ma D. Nat. Catal. 2022; 5: 766
    • 110b Lu P, Teranishi T, Asakura K, Miyake M, Toshima N. J. Phys. Chem. B 1999; 103: 9673
  • 111 Singh AK, Xu Q. ChemCatChem 2013; 5: 652
  • 112 Kilic H, Turgut M, Yilmaz MS, Dalkilic O, Metin O. ACS Sustainable Chem. Eng. 2018; 6: 11433
  • 113 Blanita G, Lazar MD. Micro Nanosyst. 2013; 5: 138
  • 114 Lee J, Chung J, Byun SM, Kim BK, Lee C. Tetrahedron 2013; 69: 5660
  • 115 Zhang R, Miao C.-X, Wang S, Xia C, Sun W. ChemCatChem 2012; 4: 192
    • 116a Passaponti M, Savastano M, Clares MP, Inclán M, Lavacchi A, Bianchi A, García-España E, Innocenti M. Inorg. Chem. 2018; 57: 14484
    • 116b Korwar S, Brinkley K, Siamaki AR, Gupton BF, Ellis KC. Org. Lett. 2015; 17: 1782
    • 116c Ding K, Zhao Y, Liu L, Li Y, Liu L, Wang Y, Gu H, Wei H, Guo Z. Electrochim. Acta 2015; 176: 1256
    • 116d Siamaki AR, Lin Y, Woodberry K, Connell JW, Gupton BF. J. Mater. Chem. A 2013; 1: 12909
  • 117 Sudha K, Burkholder M, Gilliland SE. III, Brinkley K, Gupton BF, Ellis KC. Chem. Commun. 2017; 53: 7022
    • 118a Paul T, Basak S, Punniyamurthy T. Org. Lett. 2022; 24: 6000
    • 118b Sarkar SD, Liu W, Kozhushkov SI, Ackermann L. Adv. Synth. Catal. 2014; 356: 1461
    • 118c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788

      Selected representative examples:
    • 119a Yang Z, Yu J.-T, Pan C. Org. Biomol. Chem. 2021; 19: 8442
    • 119b Gao P, Guo W, Xue J, Zhao Y, Yuan Y, Xia Y, Shi Z. J. Am. Chem. Soc. 2015; 137: 12231
    • 119c Zhao X, Yu Z. J. Am. Chem. Soc. 2008; 130: 8136

      Selected representative examples:
    • 120a Farokhi A, Shahroosvand H, Monache GD, Pilkington M, Nazeeruddin MK. Chem. Soc. Rev. 2022; 51: 5974
    • 120b Li B, Seth K, Niu B, Pan L, Yang H, Ge H. Angew. Chem. Int. Ed. 2018; 57: 3401
    • 120c Cui Z.-N, Li Y.-S, Hu D.-K, Tian H, Jiang J.-Z, Wang Y, Yan X.-J. Sci. Rep. 2016; 6: 20204
    • 120d Segawa Y, Maekawa T, Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 120e Matsidik R, Martin J, Schmidt S, Obermayer J, Lombeck F, Nübling F, Komber H, Fazzi D, Sommer M. J. Org. Chem. 2015; 80: 980
  • 121 Li R, Zhou Y, Xu X, Dong G. J. Am. Chem. Soc. 2019; 141: 18958
  • 122 Zinovyeva VA, Vorotyntsev MA, Bezverkhyy I, Chaumont D, Hierso J.-C. Adv. Funct. Mater. 2011; 21: 1064
    • 123a Köhler K, Heidenreich RG, Soomro SS, Pröckl SS. Adv. Synth. Catal. 2008; 350: 2930
    • 123b Pryjomska-Ray I, Gniewek A, Trzeciak AM, Ziółkowski JJ, Tylus W. Top. Catal. 2006; 40: 173
    • 123c Lipshutz BH, Tasler S, Chrisman W, Spliethoff B, Tesche B. J. Org. Chem. 2003; 68: 1177
  • 124 Datye AK, Xu Q, Kharas KC, McCarty JM. Catal. Today 2006; 111: 59

    • Selected representative examples:
    • 125a Ueda K, Amaike K, Maceiczyk RM, Itami K, Yamaguchi J. J. Am. Chem. Soc. 2014; 136: 13226
    • 125b Tamilavan V, Sakthivel P, Li Y, Song M, Kim C.-H, Jin S.-H, Hyun MH. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 3169
    • 125c Thaher BA, Koch P, Schattel V, Laufer S. J. Med. Chem. 2009; 52: 2613
    • 125d Yokoyama A, Kato A, Miyakoshi R, Yokozawa T. Macromolecules 2008; 41: 7271
    • 125e Garg NK, Caspi DD, Stoltz BM. J. Am. Chem. Soc. 2005; 127: 5970
    • 125f Ho L, Péra MH, Taillandier G, Fatome M, Laval JD, Leclerc G. Eur. J. Med. Chem. 1993; 28: 703

      Selected representative examples:
    • 126a Cole DC, Stock JR, Chopra R, Cowling R, Ellingboe JW, Fan KY, Harrison BL, Hu Y, Jacobsen S, Jennings LD, Jin G, Lohse PA, Malamas MS, Manas ES, Moore WJ, O’Donnell M.-M, Olland AM, Robichaud AJ, Svenson K, Wu JJ, Wagner E, Bard J. Bioorg. Med. Chem. Lett. 2008; 18: 1063
    • 126b Cole DC, Manas ES, Stock JR, Condon JS, Jennings LD, Aulabaugh A, Chopra R, Cowling R, Ellingboe JW, Fan KY, Harrison BL, Hu Y, Jacobson S, Jin G, Lin L, Lovering FE, Malamas MS, Stahl ML, Strand J, Sukhdeo MN, Svenson K, Turner MJ, Wagner E, Wu J, Zhou P, Bard J. J. Med. Chem. 2006; 49: 6158
    • 126c Portevin B, Tordjman C, Pastoureau P, Bonnet J, Nanteuil GD. J. Med. Chem. 2000; 43: 4582
    • 126d Hibi S, Tagami K, Kikuchi K, Yoshimura H, Tai K, Hida T, Tokuhara N, Yamauchi T, Nagai M. Bioorg. Med. Chem. Lett. 2000; 10: 623
    • 126e Khanna IK, Weier RM, Yu Y, Collins PW, Miyashiro JM, Koboldt CM, Veenhuizen AW, Currie JL, Seibert K, Isakson PC. J. Med. Chem. 1997; 40: 1619
  • 127 Ehlers P, Petrosyan A, Baumgard J, Jopp S, Steinfeld N, Ghochikyan TV, Langer P. ChemCatChem 2013; 5: 2504
    • 128a Consorti CS, Flores FR, Dupont J. J. Am. Chem. Soc. 2005; 127: 12054
    • 128b Weddle KS, Aiken JD. III, Finke RG. J. Am. Chem. Soc. 1998; 120: 5653
    • 128c Whitesides GM, Hackett M, Brainard RL, Lavalleye JP. P. M, Sowinski AF, Izumi AN, Moore SS, Brown DW, Staudt EM. Organometallics 1985; 4: 1819
  • 129 Anton DR, Crabtree RH. Organometallics 1983; 2: 855
    • 130a Meffre A, Lachaize S, Gatel C, Respaud M, Chaudret B. J. Mater. Chem. 2011; 21: 13464
    • 130b Prechtl MH. G, Scholten JD, Dupont J. Molecules 2010; 15: 3441
    • 130c Newman JD. S, Blanchard GJ. Langmuir 2006; 22: 5882

      Selected representative examples:
    • 131a Agrawal N, Mishra P. Med. Chem. Res. 2018; 27: 1309
    • 131b Rao PS, Kurumurthy C, Veeraswamy B, Poornachandra Y, Kumar CG, Narsaiah B. Bioorg. Med. Chem. Lett. 2014; 24: 1349
    • 131c Sarojini KB, Krishna BG, Darshanraj CG, Bharath BR, Manjunatha H. Eur. J. Med. Chem. 2010; 45: 3490
    • 131d Lu Y, Li C.-M, Wang Z, Ross CR. II, Chen J, Dalton JT, Li W, Miller DD. J. Med. Chem. 2009; 52: 1701
    • 131e Sohda K.-y, Nagai K, Yamori T, Suzuki K.-i, Tanaka A. J. Antibiot. 2005; 58: 27
  • 132 Maji A, Singh A, Mohanty A, Maji PK, Ghosh K. Dalton Trans. 2019; 48: 17083
    • 133a Ershov BG, Janata E, Michaelis M, Henglein A. J. Phys. Chem. 1991; 95: 8996
    • 133b Huie RE, Clifton CL, Neta P. Radiat. Phys. Chem. 1991; 38: 477
    • 134a Sable V, Maindan K, Kapdi AR, Shejwalkar PS, Hara K. ACS Omega 2017; 2: 204
    • 134b Rao GK, Kumar A, Kumar S, Dupare UB, Singh AK. Organometallics 2013; 32: 2452
    • 135a Gorelsky SI. Coord. Chem. Rev. 2013; 257: 153
    • 135b Gorelsky I, Lapointe D, Fagnou K. J. Org. Chem. 2012; 77: 658
    • 135c Lafrance M, Fagnou K. J. Am. Chem. Soc. 2006; 128: 16496
    • 135d Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
  • 136 Yamada YM. A, Yuyama Y, Sato T, Fujikawa S, Uozumi Y. Angew. Chem. Int. Ed. 2014; 53: 127
    • 137a Saito A, Kinoshita H, Shimizu K.-i, Nishina Y. Bull. Chem. Soc. Jpn. 2016; 89: 67
    • 137b Fu B, Missaghi MN, Downing CM, Kung MC, Kung HH, Xiao G. Chem. Mater. 2010; 22: 2181
    • 137c Sugie A, Somete T, Kanie K, Muramatsu A, Mori A. Chem. Commun. 2008; 3882
    • 137d Chauhan BP. S, Rathore J, Sardar R, Tewari P, Latif U. J. Organomet. Chem. 2003; 686: 24
    • 137e Lewis LN, Uriarte RJ, Lewis N. J. Catal. 1991; 127: 67
    • 137f Lewis LN, Lewis N. J. Am. Chem. Soc. 1986; 108: 7228
  • 138 Hegde RV, Ong T.-G, Ambre R, Jadhav AH, Patil SA, Dateer RB. Catal. Lett. 2021; 151: 1397
    • 139a Alharis RA, McMullin CL, Davies DL, Singh K, Macgregor SA. Faraday Discuss. 2019; 220: 386
    • 139b Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
  • 140 Boutadla Y, Davies DL, Macgregor SA, Poblador-Bahamonde AI. Dalton Trans. 2009; 5820