Subscribe to RSS
DOI: 10.1055/a-2066-1227
Embracing the Imperfectness of Nature using Highly Reactive N-Acyl Azahexatrienes
Financial support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (2023267 to K.Z.) and the Science and Technology Commission of Shanghai Municipality (20XD1404700 to R.H.) is highly appreciated
Abstract
Incredible examples of controlling highly reactive functional groups to synthesize amazing architectures can be found in nature. N-Acyl azahexatriene, which is involved in biosynthesis, is clearly among them, despite the extremely limited number of examples disclosed in the literature. We explored the biomimetic synthesis of macrocarbocyclic natural products, chejuenolides A–C, as well as structural variants, to unveil the hidden stereochemical relationships between their biosynthesis and those of lankacidin antibiotics. This revealed the logic of the reaction pattern, which was likely influenced by catalytic promiscuity in nature.
Publication History
Received: 25 February 2023
Accepted after revision: 30 March 2023
Accepted Manuscript online:
30 March 2023
Article published online:
05 May 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Driggers EM, Hale SP, Lee J, Terrett NK. Nat. Rev. Drug Discovery 2008; 7: 608
- 1b Marsault E, Peterson ML. J. Med. Chem. 2011; 54: 1961
- 2a Mallinson J, Collins I. Future Med. Chem. 2012; 4: 1409
- 2b Giordanetto F, Kihlberg J. J. Med. Chem. 2014; 57: 278
- 2c Yñigez-Gutierrez AE, Bachmann BO. J. Med. Chem. 2019; 62: 8412
- 3a Parenty A, Moreau X, Niel G, Campagne JM. Chem. Rev. 2013; 113: PR1-PR40
- 3b Sengupta S, Metha G. Org. Biomol. Chem. 2020; 18: 1851
- 3c Song Q, Kong L, Zhu L, Hong R, Huang S.-H. Chin. J. Chem. 2021; 39: 1022
- 3d Bechtler C, Lamers C. RSC Med. Chem. 2021; 12: 1325
- 4a Zheng K, Hong R. Nat. Prod. Rep. 2019; 36: 1546
- 4b Saridakis I, Kaiser D, Maulide N. ACS Cent. Sci. 2020; 6: 1869
- 5a Caruso A, Martinie RJ, Bushin LB, Seyedsayamdost MR. J. Am. Chem. Soc. 2019; 141: 16610
- 5b Caruso A, Seyedsayamdost MR. J. Org. Chem. 2021; 86: 11284
- 6 Martí-Centelles V, Pandey MD, Burguete MI, Luis SV. Chem. Rev. 2015; 115: 8736
- 7a Zheng K, Hong R. Acc. Chem. Res. 2021; 54: 3438
- 7b Zhai L, Tang Y, Zhang Y, Huang S.-H, Zhu L, Hong R. Chem. Rec. 2022; 22: e202100197
- 8a Gäumann E, Hütter R, Keller-Schierlein W, Neipp L, Prelog V, Zähner H. Helv. Chim. Acta 1960; 43: 601
- 8b Kamiya K, Harada S, Wada Y, Nishikawa M, Kishi T. Tetrahedron Lett. 1969; 10: 2245
- 8c Uramoto M, Ōtake N, Ogawa Y, Yonehara H, Marumo F, Saito Y. Tetrahedron Lett. 1969; 10: 2249
- 9a Ootsu K, Matsumoto T. Gann 1973; 64: 481
- 9b Ootsu K, Matsumoto T, Harada S, Kishi T. Cancer Chemother. Rep., Part 1 1975; 59: 919
- 9c Ayoub AT, EI-Magd RM. A, Xiao J, Lewis CW, Tilli TM, Arakawa K, Nindita Y, Chan G, Sun L, Glover M, Klobukowski M, Tuszynski J. J. Med. Chem. 2016; 59: 9532
- 10a Tsuchiya K, Yamazaki T, Takeuchi Y, Oishi T. J. Antibiot. 1971; 24: 29
- 10b Harada S, Yamazaki T, Hatano K, Tsuchiya K, Kishi Y. J. Antibiot. 1973; 26: 647
- 10c McFarland JW, Pirie DK, Retsema JA, English AR. Antimicrob. Agents Chemother. 1984; 25: 226
- 10d Auerbach T, Mermershtain I, Davidovich C, Bashan A, Belousoff M, Wekselman I, Zimmerman E, Xiong L, Klepacki D, Arakawa K, Kinashi H, Mankin AS, Yonath A. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 1983
- 11 Zheng K, Sheng D, Hong R. J. Am. Chem. Soc. 2017; 139: 12939
- 12 Zhang B, Zheng K, Hong R. ACS Cent. Sci. 2023; 9: 84
- 13a Choi Y.-H, Sohn J.-H, Lee D, Kim JK, Kong IS, Ahn SC, Oh H. Tetrahedron Lett. 2008; 49: 7128
- 13b Seo C, Oh H. Bull. Korean Chem. Soc. 2009; 30: 1181
- 14a Kim BB, Oh H, Ng B.-G, Han J.-W. US 9394553 (B2) 2016
- 14b Ng BG, Han J.-W, Lee DW, Choi GJ, Kim BS. J. Antibiot. 2018; 71: 495
- 15 The name ‘chejuenolin’ is suggested here for a potentially undiscovered congener of chejuenolides bearing a lactone ring involved in the biosynthesis of chejuenolide A–C.
- 16 Layer RW. Chem. Rev. 1963; 63: 489
- 17 Monbaliu J.-M, Masschelein KG. R, Stevens CV. Chem. Soc. Rev. 2011; 40: 4708
- 18a Cheng YS, Lupo AT, Fowler FW. J. Am. Chem. Soc. 1983; 105: 7696
- 18b Kumagai T, Saito S, Ehara T. Tetrahedron Lett. 1991; 32: 6895
- 18c Davies HM. L, Matasi JJ, Ahmed G. J. Org. Chem. 1996; 61: 2305
- 19 Vargas DF, Larghi EL, Kaufman TS. Nat. Prod. Rep. 2019; 36: 354
- 21a Zheng K, Hong R. Org. Lett. 2020; 22: 3785
- 21b Zheng K, Sheng D, Zhang B, Hong R. J. Org. Chem. 2020; 85: 13818
- 21c Zheng K, Sheng D, Zhang B, Hong R. J. Org. Chem. 2021; 86: 10991
- 22a Breuer SW, Bernath T, Ben-Ishai D. Tetrahedron Lett. 1966; 4569
- 22b Breuer SW, Bernath T, Ben-Ishai D. Tetrahedron 1967; 23: 2869
- 23 He S, Li P, Wang J, Zhang Y, Lu H, Shi L, Huang T, Zhang W, Ding L, He S, Liu L. Mar. Drugs 2022; 20: 269
- 24a Scholz U, Winterfeldt E. Nat. Prod. Rep. 2000; 17: 349
- 24b Bulger PG, Bagal SK, Marquez R. Nat. Prod. Rep. 2008; 25: 254
- 24c Razzak M, De Brabander J. Nat. Chem. Biol. 2011; 7: 865
- 24d Jürjens G, Kirschning A, Candito DA. Nat. Prod. Rep. 2015; 32: 723
- 25 Armaly AM, DePorre YC, Groso EJ, Riehl PS, Schindler CS. Chem. Rev. 2015; 115: 9232
- 26a Arakawa K, Sugino F, Kodama K, Ishii T, Kinashi H. Chem. Biol. 2005; 12: 249
- 26b Dorival J, Risser F, Jacob C, Collin S, Dräger G, Paris C, Chagot B, Kirschning A, Gruez A, Weissman KJ. Nat. Commun. 2018; 9: e3998
- 27a Firn RD, Jones CG. Nat. Prod. Rep. 2003; 20: 382
- 27b Fischbach MA, Clardy J. Nat. Chem. Biol. 2007; 3: 353
- 27c Wetzel WC, Whitehead SR. Ecol. Lett. 2020; 23: 16
For two recent examples:
For selected reviews, see: