Subscribe to RSS
DOI: 10.1055/a-2079-1740
Das biomechanische E-Staging: In-vivo-Biomechanik beim Keratokonus
Article in several languages: deutsch | English![](https://www.thieme-connect.de/media/klimo/202306/lookinside/thumbnails/10-1055-a-2079-1740_kl2771_de-1.jpg)
Zusammenfassung
Die ABCD-Klassifikation des Keratokonus nach Belin ermöglicht eine Stadieneinteilung des Keratokonus basierend auf den Kriterien Vorder- (A) und Rückflächenverkrümmung (B), dünnster Pachymetrie (C) und bestkorrigiertem Visus mit Brille (D). Diese Parameter ermöglichen auch eine Progressionsbeurteilung, berücksichtigen jedoch nicht die korneale Biomechanik. Die korneale Biomechanik ermöglicht mit dem Corvis ST (Oculus, Wetzlar, Deutschland) zunächst die Trennung zwischen gesunden und Keratokonus-Hornhäuten mittels Corvis Biomechanischem Index (CBI) und Tomografisch-Biomechanischem Index (TBI). Bei hoher Reliabilität der Corvis-ST-Messungen in unterschiedlichen Keratokonus-Stadien wurde daher ein biomechanischer Parameter für Keratokonus-Hornhäute entwickelt, der eine biomechanische Stadieneinteilung des Keratokonus ermöglicht und der auf dem linearen Term des CBI basiert. Dieser Corvis Biomechanische Faktor (CBiF) ist zugleich Grundlage der Einführung des biomechanischen E-Stagings, was die ABCD-Klassifikation um den Eckpfeiler der kornealen Biomechanik erweitert. Der Artikel zeigt Stärken und Limitationen der ABCDE-Klassifikation auf. Der (vermeintlich) „einseitige Keratokonus“ erweist sich zumeist als Momentaufnahme einer stark asymmetrisch ausgeprägten Keratektasie. Der reguläre Astigmatismus ist mitunter eine wichtige Differenzialdiagnose zur Keratektasie und schwierig von dieser abzugrenzen. Zudem wird die Anwendung des biomechanischen E-Stagings zur Progressionsbeurteilung des Keratokonus und nach Behandlung mittels kornealem Crosslinking oder Implantation intrakornealer Ringsegmente demonstriert und diskutiert.
Schlüsselwörter
Keratokonus - ABCDE-Klassifikation - E-Staging - Biomechanik - Corvis Biomechanischer Faktor CBiFPublication History
Received: 30 November 2022
Accepted: 14 April 2023
Article published online:
22 June 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References/Literatur
- 1 Eppig T, Spira-Eppig C, Goebels S. et al. Asymmetry between Left and Right Eyes in Keratoconus Patients Increases with the Severity of the Worse Eye. Curr Eye Res 2018; 43: 848-855
- 2 Hashemi H, Heydarian S, Hooshmand E. et al. The Prevalence and Risk Factors for Keratoconus: A Systematic Review and Meta-Analysis. Cornea 2020; 39: 263-270
- 3 de Sanctis U, Loiacono C, Richiardi L. et al. Sensitivity and Specificity of Posterior Corneal Elevation Measured by Pentacam in Discriminating Keratoconus/Subclinical Keratoconus. Ophthalmology 2008; 115: 1534-1539
- 4 Randleman JB, Dupps WJ, Santhiago MR. et al. Screening for Keratoconus and Related Ectatic Corneal Disorders. Cornea 2015; 34: e20-e22
- 5 Muftuoglu O, Ayar O, Ozulken K. et al. Posterior corneal elevation and back difference corneal elevation in diagnosing forme fruste keratoconus in the fellow eyes of unilateral keratoconus patients. J Cataract Refract Surg 2013; 39: 1348-1357
- 6 Golan O, Hwang ES, Lang P. et al. Differences in Posterior Corneal Features Between Normal Corneas and Subclinical Keratoconus. J Refract Surg 2018; 34: 664-670
- 7 Smadja D, Santhiago MR, Mello GR. et al. Influence of the reference surface shape for discriminating between normal corneas, subclinical keratoconus, and keratoconus. J Refract Surg 2013; 29: 274-281
- 8 Ambrósio R, Randleman JB. Screening for Ectasia Risk: What Are We Screening For and How Should We Screen For It?. J Refract Surg 2013; 29: 230-232
- 9 Elkitkat RS, Gharieb HM, Othman IS. Accuracy of the posterior corneal elevation values of Pentacam HR from different reference surfaces in early ectasia diagnosis. Int Ophthalmol 2021; 41: 629-638
- 10 Flockerzi E, Xanthopoulou K, Goebels SC. et al. Keratoconus staging by decades: a baseline ABCD classification of 1000 patients in the Homburg Keratoconus Center. Br J Ophthalmol 2021; 105: 1069-1075
- 11 Belin MW, Duncan JK. Keratoconus: The ABCD Grading System. Klin Monbl Augenheilkd 2016; 233: 701-707
- 12 Belin MW, Meyer JJ, Duncan JK. et al. Assessing Progression of Keratoconus and Cross-linking Efficacy: The Belin ABCD Progression Display. Int J Kerat Ect Cor Dis 2017; 6: 1-10
- 13 Flockerzi E, Elzer B, Daas L. et al. The Reliability of Successive Scheimpflug Imaging and Anterior Segment Optical Coherence Tomography Measurements Decreases With Increasing Keratoconus Severity. Cornea 2021; 40: 1433-1439
- 14 Herber R, Lenk J, Pillunat LE. et al. Comparison of corneal tomography using a novel swept-source optical coherence tomographer and rotating Scheimpflug system in normal and keratoconus eyes: repeatability and agreement analysis. Eye Vis (Lond) 2022; 9: 19
- 15 Gustafsson I, Faxén T, Vicente A. et al. An inter-day assessment of the ABC parameters in the evaluation of progressive keratoconus. Sci Rep 2021; 11: 16037
- 16 Elham R, Jafarzadehpur E, Hashemi H. et al. Keratoconus diagnosis using Corvis ST measured biomechanical parameters. J Curr Ophthalmol 2017; 29: 175-181
- 17 Tian L, Ko MWL, Wang L. et al. Assessment of ocular biomechanics using dynamic ultra high-speed Scheimpflug imaging in keratoconic and normal eyes. J Refract Surg 2014; 30: 785-791
- 18 Peña-García P, Peris-Martínez C, Abbouda A. et al. Detection of subclinical keratoconus through non-contact tonometry and the use of discriminant biomechanical functions. J Biomech 2016; 49: 353-363
- 19 Ambrósio R, Correia FF, Lopes B. et al. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications. Open Ophthalmol J 2017; 11: 176-193
- 20 Vinciguerra R, Ambrósio R, Elsheikh A. et al. Detection of Keratoconus With a New Biomechanical Index. J Refract Surg 2016; 32: 803-810
- 21 Reisdorf S. [Artificial Intelligence for the Development of Screening Parameters in the Field of Corneal Biomechanics]. Klin Monbl Augenheilkd 2019; 236: 1423-1427
- 22 Langenbucher A, Häfner L, Eppig T. et al. Keratoconus detection and classification from parameters of the Corvis® ST: A study based on algorithms of machine learning. Ophthalmologe 2021; 118: 697-706
- 23 Ambrósio R, Lopes BT, Faria-Correia F. et al. Integration of Scheimpflug-Based Corneal Tomography and Biomechanical Assessments for Enhancing Ectasia Detection. J Refract Surg 2017; 33: 434-443
- 24 Shen Y, Han T, Jhanji V. et al. Correlation Between Corneal Topographic, Densitometry, and Biomechanical Parameters in Keratoconus Eyes. Trans Vis Sci Tech 2019; 8: 12
- 25 Koh S, Inoue R, Ambrósio R. et al. Correlation Between Corneal Biomechanical Indices and the Severity of Keratoconus. Cornea 2020; 39: 215-221
- 26 Herber R, Pillunat LE, Raiskup F. Development of a classification system based on corneal biomechanical properties using artificial intelligence predicting keratoconus severity. Eye Vis (Lond) 2021; 8: 21
- 27 Shetty R, Nuijts RM, Srivatsa P. et al. Understanding the Correlation between Tomographic and Biomechanical Severity of Keratoconic Corneas. Biomed Res Int 2015; 2015: 294197
- 28 Flockerzi E, Vinciguerra R, Belin MW. et al. Correlation of the Corvis Biomechanical Factor CBiF with tomographic parameters in keratoconus. J Cataract Refract Surg 2022; 48: 215-221
- 29 Flockerzi E, Vinciguerra R, Belin MW. et al. Combined biomechanical and tomographic keratoconus staging: Adding a biomechanical parameter to the ABCD keratoconus staging system. Acta Ophthalmol 2022; 100: e1135-e1142
- 30 Flockerzi E, Häfner L, Xanthopoulou K. et al. Reliability analysis of successive Corneal Visualization Scheimpflug Technology measurements in different keratoconus stages. Acta Ophthalmol 2022; 100: e83-e90
- 31 Eliasy A, Chen KJ, Vinciguerra R. et al. Determination of Corneal Biomechanical Behavior in-vivo for Healthy Eyes Using CorVis ST Tonometry: Stress-Strain Index. Front Bioeng Biotechnol 2019; 7: 105
- 32 Gomes JAP, Tan D, Rapuano CJ. et al. Global consensus on keratoconus and ectatic diseases. Cornea 2015; 34: 359-369
- 33 Amsler M. The “forme fruste” of keratoconus. Wien Klin Wochenschr 1961; 73: 842-843
- 34 Salomão MQ, Höffling-Lima AL, Esporcatte LPG, Faria Correia F, Lopes BT, Sena N, Machado AP, Ambrósio R. Redefining Forme Fruste Keratoconus. In: Almodin E, Nassaralla BA, Sandes J. eds. Keratoconus. Cham: Springer International Publishing; 2022: 853-867
- 35 Vinciguerra R, Ambrósio R, Roberts CJ. et al. Biomechanical Characterization of Subclinical Keratoconus Without Topographic or Tomographic Abnormalities. J Refract Surg 2017; 33: 399-407
- 36 Herber R, Hasanli A, Lenk J. et al. Evaluation of Corneal Biomechanical Indices in Distinguishing Between Normal, Very Asymmetric, and Bilateral Keratoconic Eyes. J Refract Surg 2022; 38: 364-372
- 37 Flockerzi E, Xanthopoulou K, Daas L. et al. Evaluation of Dynamic Corneal Response Parameters and the Biomechanical E-Staging After Accelerated Corneal Cross-Linking in Keratoconus. Asia Pac J Ophthalmol (Phila) 2022; 11: 514-520
- 38 Xanthopoulou K, Milioti G, Daas L. et al. Accelerated corneal crosslinking causes pseudoprogression in keratoconus within the first 6 weeks without affecting posterior corneal curvature. Eur J Ophthalmol 2022; 32: 2565-2576
- 39 Caporossi A, Mazzotta C, Baiocchi S. et al. Long-term Results of Riboflavin Ultraviolet A Corneal Collagen Cross-linking for Keratoconus in Italy: The Siena Eye Cross Study. Am J Ophthalmol 2010; 149: 585-593
- 40 Greenstein SA, Shah VP, Fry KL. et al. Corneal thickness changes after corneal collagen crosslinking for keratoconus and corneal ectasia: one-year results. J Cataract Refract Surg 2011; 37: 691-700
- 41 Herber R, Francis M, Spoerl E. et al. Evaluation of Biomechanical Changes After Accelerated Cross-Linking in Progressive Keratoconus: A Prospective Follow-Up Study. Cornea 2023;
- 42 Herber R, Vinciguerra R, Tredici C. et al. Repeatability of corneal deformation response parameters by dynamic ultra-high speed Scheimpflug imaging before and after corneal cross-linking. J Cataract Refract Surg 2023;
- 43 Zare M, Mehrjardi H, Afarideh M. et al. Visual, keratometric and corneal biomechanical changes after Intacs SK implantation for moderate to severe keratoconus. J Ophthalmic Vis Res 2016; 11: 17
- 44 Matar C, Daas L, Suffo S. et al. Reliability of corneal tomography after implantation of intracorneal ring segments for keratoconus. Ophthalmologe 2020; 117: 1092-1099
- 45 Kang MJ, Byun YS, Yoo YS. et al. Long-term outcome of intrastromal corneal ring segments in keratoconus: Five-year follow up. Sci Rep 2019; 9: 315