Osteologie 2023; 32(03): 171-175
DOI: 10.1055/a-2080-2362
Review

Körperliches Training und Frakturprävention. Trainingsinhaltliche Empfehlungen zur Verbesserung der Knochenfestigkeit

Exercise and fracture prevention. Recommendations on types of exercise for bone strengthening
Sebastian Willert
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Simon von Stengel
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
,
Matthias Kohl
2   Department of Medical and Life Sciences, Hochschule Furtwangen - Campus Villingen-Schwenningen, Villingen-Schwenningen, Deutschland
,
Franz Jakob
3   Bernhard-Heine-Centrum für Bewegungsforschung, Julius-Maximilians-Universität Würzburg, Würzburg, Deutschland
,
Katharina Kerschan-Schindl
4   Physikalische Medizin und Rehabilitation, Universität Wien, Wien, Österreich
,
Uwe Lange
5   Physikalische Medizin und Osteologie, Kerckhoff-Klinik GmbH, Bad Nauheim, Deutschland
,
Stefan Peters
6   Deutscher Verband für Gesundheitssport und Sporttherapie e.V., Hürth, Deutschland
,
Friederike Thomasius
7   Frankfurter Hormon- und Osteoporosezentrum, Frankfurt, Deutschland
,
1   Institut für Radiologie, Universitätsklinikum Erlangen, Erlangen, Deutschland
› Institutsangaben

Zusammenfassung

„Trainingsinhalte“ sind „konkrete Maßnahmen zur Realisierung des/der geplanten Trainingsziel(e)s“. Im Bereich der Forschung am Knochen bietet sich eine Einteilung der Trainingsinhalte (oder Belastungstypen) in mechanisch lokale wie axiale Belastung, Muskelzugsbelastung, Belastungsverteilung sowie einen systemisch übergreifenden „Knochenfaktor“, die endokrine Komponente an. Crosssektionale Studien mit Sportlerkollektiven sowie longitudinale Untersuchungen mit untrainierten, älteren Kollektiven zeigen dabei, dass sich Trainingsinhalte mit hohem osteoanabolem Potenzial durch hohe axiale Belastung, hohe Muskelzugsbelastung, ungewöhnliche Belastungsverteilung und günstiges hormonelles Milieu auszeichnen. Ein günstiges hormonelles Milieu, also eine belastungsinduzierte erhöhte Konzentration anaboler Substanzen, kann dabei permissiv für die Effekte mechanischer Knochenfaktoren sein. Hohe axiale Trainingsreize kollidieren indes häufig mit dem körperlichen Status älterer Menschen. Ein dynamisches Krafttraining, idealerweise an Kraftgeräten, bietet die Möglichkeit auch intensive Methodenvarianten sicher und schmerzfrei zu applizieren. Insbesondere das Vehikel „Wassergymnastik“ bietet sich für besonders vulnerable Gruppen als Trainingsoption zur eigenverantwortlichen Osteoporosetherapie/Frakturprophylaxe an. Rehabilitationssport und Funktionstraining können dabei als geeignete Vehikel zur Umsetzung dienen.

Abstract

In basic exercise science, training contents characterize the types of exercise needed to address the training aim. The usual classification of exercise contents into endurance, resistance or coordination exercise is hardly applicable for bone, however. As an example, endurance exercise includes various types of exercise that considerably vary in their mechanical demands (e. g. running vs. swimming). Following a more bone-specific approach, a classification of training contents into three site-specific, mechanical bone factors and one systemic endocrine factor is more appropriate. Applying bone factors, i. e. axial loading, muscular tension, load distribution and endocrine effect of exercise, enables the relevance of different sports for bone strength to be judged by analyzing their inherent exercise characteristic. Many cross-sectional studies focus on highly trained athletes because of the high training compliance and the long exercise exposure in this cohort. As confirmed by longitudinal exercise trials with older adults, the study results indicate that types of exercise with high demands on axial loading, muscular tension and load distribution, which in turn generate a favorable hormonal milieu, are particularly effective in increasing bone-strength parameters. Dynamic resistance exercise (DRT) or exercises with high impact (e. g. exercises with jumping or sprinting components) largely offer such favorable exercise characteristics. However, the physical status and safety aspects related to the predominately older cohorts prone to osteoporosis frequently conflict with the application of high-impact exercise. On the other hand, current evidence suggests that even high intensity DRT can be applied safely and pain-free in older cohorts with osteoarthritis. For particularly vulnerable cohorts, aquatic gymnastics can be recommended for increasing bone mineral density at the lumbar spine and proximal femur. As a sustainable vehicle for implementing exercise, consistently supervised “Rehabilitationssport” or “Funktionstraining” can be recommended as a feasible and widespread training option for fracture prevention.



Publikationsverlauf

Eingereicht: 10. Februar 2023

Angenommen: 26. März 2023

Artikel online veröffentlicht:
17. Mai 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Fröhlich M, Kemmler W, Pfeiffer M.. Training im Sport als Prozess – Trainingssteuerung. In: Güllich A, Krüger M, Hrsg. Bewegung, Training und Leistung. Heidelberg, Berlin: Springer; 2020
  • 2 Weineck J.. Optimales Training. Erlangen: Spitta-Verlag; 2019
  • 3 Kemmler W, Stengel V.. The Role of Exercise on Fracture Reduction and Bone Strengthening. In: Zoladz J, Hrsg. Muscle and Exercise Physiology. London: Academic Press; 2019: 433-448
  • 4 Senn E.. Grundlagen der positiv-trophischen Wirksamkeit physikalischer Belastung auf normales, osteopenisches und osteoporotisches Knochengewebe. Phys Med 1994; 4: 133-134
  • 5 Lanyon LE.. Biomechanical factors in adaption of bone structure to function. In: Uhthoff HK, Hrsg. Current concepts of bone fragility. Berlin: Springer; 1986
  • 6 Lanyon LE.. Using functional loading to influence bone mass and architecture: objectives, mechanisms, and relationship with estrogen of the mechanically adaptive process in bone. Bone 1996; 18: 37S-43S
  • 7 Rubin CT, Lanyon LE.. Regulation of bone formation by applied dynamic loads. J Bone Joint Surg Am 1984; 66: 397-402
  • 8 Rubin CT, Lanyon LE.. Dynamic strain similarity in vertebrates; an alternative to allometric limb bone scaling. J Theor Biol 1984; 107: 321-327
  • 9 Frost HM.. Why do marathon runners have less bone than weight lifters? A vital-biomechanical view and explanation. Bone 1997; 20: 183-189
  • 10 Schoenau E, Frost HM.. The muscle-bone unit in children and adolescents. Calc Tiss Int 2002; 75: 405-407
  • 11 Turner CH.. Three rules for bone adaptation to mechanical stimuli. Bone 1998; 23: 399-407
  • 12 Tenforde AS, Fredericson M.. Influence of sports participation on bone health in the young athlete: a review of the literature. PM R 2011; 3: 861-867 DOI: 10.1016/j.pmrj.2011.05.019.
  • 13 Jansson D, Lindberg AS, Lundberg E. et al. Effects of Resistance and Endurance Training Alone or Combined on Hormonal Adaptations and Cytokines in Healthy Children and Adolescents: A Systematic Review and Meta-analysis. Sports Med Open 2022; 8: 81 DOI: 10.1186/s40798-022-00471-6.
  • 14 Maimoun L, Sultan C.. Effect of physical activity on calcium homeostasis and calciotropic hormones: a review. Calcif Tissue Int 2009; 85: 277-286 DOI: 10.1007/s00223-009-9277-z.
  • 15 Frost HM.. The role of changes in mechanical usage set points in the pathogenesis of osteoporosis. J Bone Miner Res 1992; 7: 253-261
  • 16 Sugiyama T, Yamaguchi A, Kawai S.. Effects of skeletal loading on bone mass and compensation mechanism in bone: a new insight into the “mechanostat” theory. J Bone Miner Metab 2002; 20: 196-200
  • 17 Scofield KL, Hecht S.. Bone health in endurance athletes: runners, cyclists, and swimmers. Curr Sports Med Rep 2012; 11: 328-334 DOI: 10.1249/JSR.0b013e3182779193.
  • 18 Bennell KL, Malcolm SA, Wark JD. et al. Skeletal effects of menstrual disturbances in athletes. Scand J Med Sci Sports 1997; 7: 261-273
  • 19 Cobb KL, Bachrach LK, Greendale G. et al. Disordered eating, menstrual irregularity, and bone mineral density in female runners. Med Sci Sports Exerc 2003; 35: 711-719
  • 20 Burrows M, Nevill AM, Bird S. et al. Physiological factors associated with low bone mineral density in female endurance runners. Br J Sports Med 2003; 37: 67-71
  • 21 Sabo D, Reiter A, Güßbacher A.. Einfluß von Hochleistungstraining auf den Mineralgehalt des Knochens - DEXA bei Topathleten. Physikalische Medizin 1994; 4: 141
  • 22 Heinonen A, Oja P, Kannus P. et al. Bone mineral density in female athletes representing sports with different loading characteristics of the skeleton. Bone 1995; 17: 197-203
  • 23 Constantini NW, Warren MP.. Menstrual dysfunction in swimmers: a distinct entity. J Clin Endocrinol Metab 1995; 80: 2740-2744 DOI: 10.1210/jcem.80.9.7673417.
  • 24 Creighton DL, Morgan AL, Boardley D. et al. Weight bearing exercise and markers of bone turnover in female athletes. J Appl Physiol 2001; 90: 565-570
  • 25 Gomez-Bruton A, Gonzalez-Aguero A, Gomez-Cabello A. et al. Is bone tissue really affected by swimming? A systematic review. PLoS One 2013; 8: e70119 DOI: 10.1371/journal.pone.0070119.
  • 26 Nagle KB, Brooks MA.. A Systematic Review of Bone Health in Cyclists. Sports Health 2011; 3: 235-243 DOI: 10.1177/1941738111398857.
  • 27 Olmedillas H, Gonzalez-Aguero A, Moreno LA. et al. Cycling and bone health: a systematic review. BMC Med 2012; 10: 168 DOI: 10.1186/1741-7015-10-168.
  • 28 Mohr M, Helge EW, Petersen LF. et al. Effects of soccer vs swim training on bone formation in sedentary middle-aged women. Eur J Appl Physiol 2015; 115: 2671-2679 DOI: 10.1007/s00421-015-3231-8.
  • 29 Haapasalo H, Kannus P, Sievanen H. et al. Long-term unilateral loading and bone mineral density and content in female squash players. Calcif Tissue Int 1994; 54: 249-255
  • 30 Haapasalo H, Kannus P, Sievanen H. et al. Effect of long-term unilateral activity on bone mineral density of female junior tennis players. J Bone Miner Res 1998; 13: 310-319
  • 31 Kemmler W, Shojaa M, Kohl M. et al. Effects of Different Types of Exercise on Bone Mineral Density in Postmenopausal Women: A Systematic Review and Meta-analysis. Calcif Tissue Int 2020; 107: 409-439 DOI: 10.1007/s00223-020-00744-w.
  • 32 Shojaa N, von Stengel S, Schoene D. et al. Effect of exercise training on bone mineral density in postmenopausal women: A systematic review and meta-analysis of intervention studies. Front Physiol 2020; 11: 1427-1444 DOI: 10.3389/fphys.2020.00652.
  • 33 Beck BR, Daly RM, Singh MA. et al. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. J Sci Med Sport 2016; 20: 438-445 DOI: 10.1016/j.jsams.2016.10.001.
  • 34 Ma D, Wu L, He Z.. Effects of walking on the preservation of bone mineral density in perimenopausal and postmenopausal women: a systematic review and meta-analysis. Menopause 2013; 20: 1216-1226 DOI: 10.1097/GME.0000000000000100.
  • 35 Martyn-St James M, Carroll S.. Meta-analysis of walking for preservation of bone mineral density in postmenopausal women. Bone 2008; 43: 521-531 S8756-3282(08)00276-7 DOI: 10.1016/j.bone.2008.05.012.
  • 36 Rodrigues IB, Ponzano M, Butt DA. et al. The Effects of Walking or Nordic Walking in Adults 50 Years and Older at Elevated Risk of Fractures: A Systematic Review and Meta-Analysis. J Aging Phys Act 2021; 29: 886-899 DOI: 10.1123/japa.2020-0262.
  • 37 Erben RG.. Hypothesis: Coupling between Resorption and Formation in Cancellous bone Remodeling is a Mechanically Controlled Event. Front Endocrinol (Lausanne) 2015; 6: 82 DOI: 10.3389/fendo.2015.00082.
  • 38 Eriksen EF.. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord 2010; 11: 219-227 DOI: 10.1007/s11154-010-9153-1.
  • 39 Ebrahim SB, Thompson PW, Baskaran V. et al. Randomized placebo controlled trial of brisk walking in the prevention of postmenopausal osteoporosis. Age and Aging 1997; 26: 252-260
  • 40 Torres-Ronda L, Del Alcazar XS.. The Properties of Water and their Applications for Training. J Hum Kinet 2014; 44: 237-248 DOI: 10.2478/hukin-2014-0129.
  • 41 Simas V, Hing W, Pope R. et al. Effects of water-based exercise on bone health of middle-aged and older adults: a systematic review and meta-analysis. Open Access J Sports Med 2017; 8: 39-60 DOI: 10.2147/OAJSM.S129182.
  • 42 Schinzel E, Kast S, Kohl M. et al. The effect of aquatic exercise on bone mineral density in older adults. A systematic review and meta-analysis. Front Physiol 2023; 14: 1135663 DOI: 10.3389/fphys.2023.1135663.
  • 43 Ramirez-Villada JF, Leon-Ariza HH, Arguello-Gutierrez YP. et al. [Effect of high impact movements on body composition, strength and bone mineral density on women over 60 years]. Rev Esp Geriatr Gerontol 2016; 51: 68-74 DOI: 10.1016/j.regg.2015.09.001.
  • 44 Liu CJ, Latham NK.. Progressive resistance strength training for improving physical function in older adults. Cochrane Database Syst Rev 2009; CD002759 DOI: 10.1002/14651858.CD002759.pub2.
  • 45 Kemmler W, Shojaa M, Kohl M. et al. Dynamisches Krafttraining und Knochendichte an der Lendenwirbelsäule postmenopausaler Frauen. Osteologie 2020; 29: 194-206
  • 46 Haff GG.. Roundtable Discussion: Machines Versus Free Weights. Strength and Conditioning Journal 2000; 22: 18-30
  • 47 Roshanravan B, Patel KV, Fried LF. et al. Association of Muscle Endurance, Fatigability, and Strength With Functional Limitation and Mortality in the Health Aging and Body Composition Study. J Gerontol A Biol Sci Med Sci 2017; 72: 284-291 DOI: 10.1093/gerona/glw210.
  • 48 Visser M, Goodpaster BH, Kritchevsky SB. et al. Muscle mass, muscle strength, and muscle fat infiltration as predictors of incident mobility limitations in well-functioning older persons. J Gerontol A Biol Sci Med Sci 2005; 60: 324-333