Synthesis 2023; 55(23): 3875-3894
DOI: 10.1055/a-2096-4302
review

Synthesis of Heterocycles from Donor-Acceptor Cyclopropanes: A Five-Year Recap

Ani Deepthi
,
Meenakshy C. B.
,
Maneesh Mohan
M.C.B. and M.M. thank the University of Kerala for research fellowships.


Abstract

This review discusses the utility of donor-acceptor cyclopropanes (DACs) for the construction of heterocycles. In addition to (3+2), (3+3), and (4+3) cycloaddition pathways, nucleophilic ring-opening reactions, intramolecular transformations, and cycloisomerizations in the presence of suitable catalysts pave the way for the generation of heterocycles from DACs. The mild reactions conditions employed and the variety of starting materials that can be used as reaction partners make the DAC route for heterocycle synthesis attractive. The literature covered in this review is from the period 2018 to 2023.

1 Introduction

2 Synthesis of Nitrogen Heterocycles

2.1 By Annulations with Anthranils and Azadienes

2.2 By Nucleophilic Attack of Anilines and Hydrazones

2.3 By Reaction with Ureas and Thioureas

2.4 By Annulation Reactions Using an Azomethine Imine

2.5 By Reaction with Other Nitrogen Heterocycles

2.6 By Other Transformations

3 Synthesis of Oxygen Heterocycles

3.1 By Intramolecular Transformations

3.2 By Intermolecular Reactions

4 Synthesis of Sulfur and Selenium Heterocycles

4.1 By Reaction with Thiocarbonyl Substrates

4.2 By Reaction with Thio- and Selenocyanates and Thiosulfonate Salts

5 Synthesis of N–S and N–O Heterocycles

6 Conclusions



Publication History

Received: 21 March 2023

Accepted after revision: 19 May 2023

Accepted Manuscript online:
22 May 2023

Article published online:
26 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
  • 2 Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
  • 3 Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804
  • 4 Special issue on Chemistry of Donor-Acceptor Cyclopropanes and Cyclobutanes: Reissig H.-U, Werz DB. Eds. Isr. J. Chem. 2016; 365-577
  • 5 Pagenkopf BL, Vemula N. Eur. J. Org. Chem. 2017; 2017: 2561
  • 6 Liu J, Liu R, Wei Y, Shi M. Trends Chem. 2019; 1: 779
  • 7 Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
  • 8 Ghosh K, Das S. Org. Biomol. Chem. 2021; 19: 965
  • 9 Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
  • 10 Ivanova OA, Trushkov IV. Chem. Rec. 2019; 19: 2189
  • 11 Caillé J, Robiette R. Org. Biomol. Chem. 2021; 19: 5702
  • 12 Dennis N. Addition Reactions: Cycloaddition . In Organic Reaction Mechanisms 2017 . Knipe AC, Moloney MG. John Wiley & Sons; Chichester: 2020: 501-526
  • 13 Singh P, Varshnaya RK, Dey R, Banerjee P. Adv. Synth. Catal. 2020; 362: 1417
  • 14 Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 25825
  • 15 Augustin AU, Werz DB. Acc. Chem. Res. 2021; 54: 1528
  • 16 Jaiswal V, Mondal B, Saha J. Asian J. Org. Chem. 2020; 9: 1466
  • 17 Xia Y, Liu X, Feng X. Angew. Chem. Int. Ed. 2021; 60: 9192
  • 18 Kreft A, Jones PG, Werz DB. Org. Lett. 2018; 20: 2059
  • 19 Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
  • 20 Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
  • 21 Wang Z.-H, Zhang H.-H, Wang D.-M, Xu P.-F, Luo Y.-C. Chem. Commun. 2017; 53: 8521
  • 22 Cheng Q, Xie J.-H, Weng Y.-C, You S.-L. Angew. Chem. Int. Ed. 2019; 58: 5739
  • 23 Zhang X, Feng M, Yang G, Chai Z. J. Org. Chem. 2020; 85: 430
  • 24 Verma K, Banerjee P. Adv. Synth. Catal. 2017; 359: 3848
  • 25 Verma K, Banerjee P. Adv. Synth. Catal. 2018; 360: 3687
  • 26 Verma K, Tailya IM, Banerjee P. Org. Biomol. Chem. 2019; 17: 8149
  • 27 Nicolai S, Waser J. Angew. Chem. Int. Ed. 2022; 61: e202209006
    • 28a Sathishkannan G, Tamilarasan VJ, Srinivasan K. Org. Biomol. Chem. 2017; 15: 1400
    • 28b Thangamani M, Srinivasan K. J. Org. Chem. 2021; 86: 1172
  • 29 Das BK, Pradhan S, Punniyamurthy T. Chem. Commun. 2019; 55: 8083
  • 30 Sahu AK, Biswas S, Bora SK, Saikia AK. New J. Chem. 2022; 46: 12456
  • 31 Dhara S, Ghosh S, Das AR. Org. Biomol. Chem. 2022; 20: 1415
  • 32 Garve LK. B, Petzold M, Jones PG, Werz DB. Org. Lett. 2016; 18: 564
  • 33 Mishra M, De PB, Pradhan S, Punniyamurthy T. J. Org. Chem. 2019; 84: 10901
  • 34 Taily IM, Saha D, Banerjee P. Eur. J. Org. Chem. 2019; 2019: 7804
  • 35 Wang S, Xie Z, Li M, Wang C. ChemistrySelect 2020; 5: 6011
  • 36 Su Z, Qian S, Xue S, Wang C. Org. Biomol. Chem. 2017; 15: 7878
  • 37 Deepthi A, Thomas NV, Leena SS. New J. Chem. 2021; 45: 8847 ; and references cited therein
  • 38 Mandadapu R, Dehade AS, Shete SA, Montgomery M, Sikervar V, Sonawane R. Synthesis 2021; 53: 2865
  • 39 Varshnaya RK, Banerjee P. J. Org. Chem. 2019; 84: 1614
  • 40 Vartanova AE, Levina II, Rybakov VB, Ivanova OA, Trushkov IV. J. Org. Chem. 2021; 86: 12300
  • 41 Dutta HS, Ahmad A, Khan AA, Kumar M, Raziullah, Vaishnav J, Gangwar M, Ampapathi RS, Koley D. J. Org. Chem. 2021; 86: 16558
  • 42 Ortega A, Uria U, Tejero T, Prieto L, Reyes E, Merino P, Vicario JL. Org. Lett. 2021; 23: 2326
    • 43a Harrington P, Kerr MA. Tetrahedron Lett. 1997; 38: 5949
    • 43b England DB, Woo TK, Kerr MA. Can. J. Chem. 2002; 80: 992
    • 43c Emmett MR, Kerr MA. Org. Lett. 2011; 13: 4180
  • 44 Bajtos B, Yu M, Zhao H, Pagenkopf BL. J. Am. Chem. Soc. 2007; 129: 9631
  • 45 Laugeois M, Ling J, Férard C, Michelet V, Ratovelomanana-Vidal V, Vitale MR. Org. Lett. 2017; 19: 2266
  • 46 Venkatesh C, Singh PP, Ila H, Junjappa H. Eur. J. Org. Chem. 2006; 2006: 5378
  • 47 Irwin LC, Renwick CR, Kerr MA. J. Org. Chem. 2018; 83: 6235
  • 48 Karjee P, Mishra M, Debnath B, Punniyamurthy T. Chem. Commun. 2022; 58: 8670

    • Some examples include:
    • 49a Fischer C, Meyers C, Carreira EM. Helv. Chim. Acta 2000; 83: 1175
    • 49b Helan V, Mills A, Drewry D, Grant D. J. Org. Chem. 2010; 75: 6693
    • 49c Buev EM, Moshkin VS, Sosnovskikh VY. Tetrahedron Lett. 2018; 59: 3409
    • 49d Xu P.-W, Liu J.-K, Shen L, Cao Z.-Y, Zhao X.-L, Yan J, Zhou J. Nat. Commun. 2017; 8: 1619
    • 49e Singh K, Pramanik S, Hamlin TA, Mondal B, Das D, Saha J. Chem. Commun. 2019; 55: 7069
    • 49f Xiao J.-A, Cheng X.-L, Li Y.-C, He Y.-M, Li J.-L, Liu Z.-P, Xia P.-J, Su W, Yang H. Org. Biomol. Chem. 2019; 17: 103
    • 50a Akaev AA, Villemson EV, Vorobyeva NS, Majouga AG, Budynina EM, Melnikov MY. J. Org. Chem. 2017; 82: 5689
    • 50b Akaev AA, Melnikov MY, Budynina EM. Org. Lett. 2019; 21: 9795
  • 51 Vartanova AE, Plodukhin AY, Ratmanova NK, Andreev IA, Anisimov MN, Gudimchuk NB, Rybakov VB, Levina II, Ivanova OA, Trushkov IV, Alabugin IV. J. Am. Chem. Soc. 2021; 143: 13952
  • 52 Singh PR, Kalaramna P, Ali S, Goswami A. Eur. J. Org. Chem. 2021; 2021: 4683
  • 53 Andreev IA, Ratmanova NK, Augustin AU, Ivanova OA, Levina II, Khrustalev VN, Werz DB, Trushkov IV. Angew. Chem. Int. Ed. 2021; 60: 7927
  • 55 Ivanova OA, Andronov VA, Vasin VS, Shumsky AN, Rybakov VB, Voskressensky LG, Trushkov IV. Org. Lett. 2018; 20: 7947
  • 56 Deepthi A, Beneesh PB, Balachandran AL. Org. Prep. Proced. Int. 2019; 51: 409 ; and references cited therein
  • 57 Su Z, Xie Z, Wang S, Luo N, Wang C. Org. Biomol. Chem. 2019; 17: 7342
  • 58 Gai S, Lucas NT, Hawkins BC. Org. Lett. 2019; 21: 2872
  • 59 Shao J, Luo Q, Bi H, Wang SR. Org. Lett. 2021; 23: 459
  • 60 Petzold M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 6225
  • 61 Kolb S, Petzold M, Brandt F, Jones PG, Jacob CR, Werz DB. Angew. Chem. Int. Ed. 2021; 60: 15928
  • 62 Mondal M, Panda M, McKee V, Kerrigan NJ. J. Org. Chem. 2019; 84: 11983
  • 63 Denisov DA, Borisov DD, Korolev VA, Novikov RA, Tomilov YV. J. Org. Chem. 2019; 84: 6174
  • 64 Liu H, Tian L, Wang H, Li Z.-Q, Zhang C, Xue F, Feng C. Chem. Sci. 2022; 13: 2686
  • 65 Su P, Li H, Chen W, Luo G, Yang G, Chai Z. Eur. J. Org. Chem. 2020; 2020: 5380
  • 66 Mikhaylov AA, Kuleshov AV, Solyev PN, Korlyukov AA, Dorovatovskii PV, Mineev KS, Baranov MS. Org. Lett. 2020; 22: 2740
  • 67 Nie G, Huang X, Wang Z, Pan D, Zhang J, Chi YR. Org. Chem. Front. 2021; 8: 5105
  • 68 Sathishkannan G, Srinivasan K. Chem. Commun. 2014; 50: 4062
  • 69 Garve LK. B, Pawliczek M, Wallbaum J, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 521
  • 70 Augustin AU, Sensse M, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2017; 56: 14293
  • 71 Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Beilstein J. Org. Chem. 2020; 16: 1288
    • 72a Augustin AU, Busse M, Jones PG, Werz DB. Org. Lett. 2018; 20: 820
    • 72b Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Eur. J. Org. Chem. 2021; 2021: 6250
  • 73 Jacob A, Jones PG, Werz DB. Org. Chem. Front. 2022; 9: 6933
  • 74 Matsumoto Y, Nakatake D, Yazaki R, Ohshima T. Chem. Eur. J. 2018; 24: 6062
  • 75 Sundaravelu N, Sekar G. Org. Lett. 2019; 21: 6648
  • 76 Xie M.-S, Zhao G.-F, Qin T, Suo Y.-B, Qu G.-R, Guo H.-M. Chem. Commun. 2019; 55: 1580
  • 77 Augustin AU, Merz JL, Jones PG, Mloston G, Werz DB. Org. Lett. 2019; 21: 9405
  • 78 Tang P, Wei Y.-Y, Wen L, Ma H.-J, Yang Y, Jiang Y. J. Org. Chem. 2022; 87: 10890
  • 79 Gopal B, Singh PR, Kumar M, Goswami A. J. Org. Chem. 2023; 88: 132
  • 81 Jacob A, Barkawitz P, Jones PG, Werz DB. Org. Lett. 2022; 24: 3028
  • 82 Dhote PS, Ramana CV. Org. Lett. 2019; 21: 6221
  • 83 Ahlburg NL, Hergert O, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2023; 62: e202214390
  • 84 Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Russ. Chem. Rev. 2018; 87: 201