Synlett 2023; 34(19): 2249-2256
DOI: 10.1055/a-2097-5692
synpacts

Initialing Circularly Polarized Room-Temperature Phosphorescence from Purely Organic Luminophore Aggregate

Wenbin Huang
,
Zikai He
This work was supported by the National Natural Science Foundation of China (21975061), the Shenzhen Fundamental Research Program (GXWD20201230155427003-20200728150952003, JCYJ201908061424 03535)


Abstract

The newly emerging field of circularly polarized room-temperature phosphorescence (CP-RTP) has experienced rapid growth due to the intriguing photophysical properties and wide-ranging potential applications of such materials. Of particular interest are the purely organic CP-RTPs, as they offer excellent biocompatibility, versatile tunability, and cost-effectiveness. These materials show promising applications in fields including biological imaging, photodiodes, intelligent sensing, information storage, and three-dimensional displays. To deepen our understanding of the luminescence mechanism and broaden the envisioned scope, herein, we summarize them based on chirality character, including point, axial, planar, and other chiral systems. This review aims to scrutinize missing clues and envision future development in the area.

1 Introduction

2 Photophysics of CP-RTP

3 Purely Organic CP-RTP Materials

3.1 CP-RTP Systems based on Point Chirality

3.2 CP-RTP Systems based on Axial Chirality

3.3 CP-RTP Systems based on Planar Chirality and Others

4 Conclusion



Publication History

Received: 26 April 2023

Accepted after revision: 23 May 2023

Accepted Manuscript online:
23 May 2023

Article published online:
10 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Brandt JR, Salerno F, Fuchter MJ. Nat. Rev. Chem. 2017; 1: 45
    • 1b Pop F, Zigon N, Avarvari N. Chem. Rev. 2019; 119: 8435
    • 1c MacKenzie LE, Pal R. Nat. Rev. Chem. 2020; 5: 109
    • 1d Sang Y, Han J, Zhao T, Duan P, Liu M. Adv. Mater. 2020; 32: e1900110
    • 1e Zhang C, Li S, Dong X, Zang S. Aggregate 2021; 2: e48
    • 1f Visheratina A, Kotov NA. CCS Chem. 2020; 2: 583
    • 1g Gong ZL, Li ZQ, Zhong YW. Aggregate 2022; 3: e177
    • 2a Yang J, Fang M, Li Z. InfoMat 2020; 2: 791
    • 2b Cai S, Yao X, Ma H, Shi H, An Z. Aggregate 2023; 4: e320
    • 2c Wang Z, Cheng X, Xie Y, Liu S, Dong M, Zhao J, Liang F, An Z, Huang W. CCS Chem. 2023; 5: 292
    • 2d Gu F, Ma X. Chem. Eur. J. 2022; 28: e202104131
    • 2e Wang C, Gong Y, Yuan W, Zhang Y. Chin. Chem. Lett. 2016; 27: 1184
  • 3 Wang X, Ma S, Zhao B, Deng J. Adv. Funct. Mater. 2023; 33: 2214364
  • 4 Zhao W, He Z, Tang BZ. Nat. Rev. Mater. 2020; 5: 869
  • 5 Huang W, Fu C, Liang Z, Zhou K, He Z. Angew. Chem. Int. Ed. 2022; 61: e202202977
  • 6 He Z, Zhao W, Lam JW. Y, Peng Q, Ma H, Liang G, Shuai Z, Tang BZ. Nat. Commun. 2017; 8: 416
  • 7 Zhao W, He Z, Lam JW. Y, Peng Q, Ma H, Shuai Z, Bai G, Hao J, Tang BZ. Chem 2016; 1: 592
    • 8a Liu M, Zhang L, Wang T. Chem. Rev. 2015; 115: 7304
    • 8b Gong Z.-L, Zhu X, Zhou Z, Zhang S.-W, Yang D, Zhao B, Zhang Y.-P, Deng J, Cheng Y, Zheng Y.-X, Zang S.-Q, Kuang H, Duan P, Yuan M, Chen C.-F, Zhao YS, Zhong Y.-W, Tang BZ, Liu M. Sci. China Chem. 2021; 64: 2060
  • 9 Sanchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de la Moya S. Chem. Eur. J. 2015; 21: 13488
  • 10 Li H, Li H, Wang W, Tao Y, Wang S, Yang Q, Jiang Y, Zheng C, Huang W, Chen R. Angew. Chem. Int. Ed. 2020; 59: 4756
  • 11 Li J.-A, Song Z, Chen Y, Xu C, Li S, Peng Q, Shi G, Liu C, Luo S, Sun F, Zhao Z, Chi Z, Zhang Y, Xu B. Chem. Eng. J. 2021; 418: 129167
  • 12 Cheng Z, Shi H, Ma H, Bian L, Wu Q, Gu L, Cai S, Wang X, Xiong WW, An Z, Huang W. Angew. Chem. Int. Ed. 2018; 57: 678
  • 13 Chen W, Tian Z, Li Y, Jiang Y, Liu M, Duan P. Chem. Eur. J. 2018; 24: 17444
    • 14a Kasha M, Mcglynn SP. Annu. Rev. Phys. Chem. 1956; 7: 403
    • 14b Kasha M. Discuss. Faraday Soc. 1950; 14
    • 14c Itoh T. Chem. Rev. 2012; 112: 4541
  • 15 Zhang H, Zhao Z, McGonigal PR, Ye R, Liu S, Lam JW. Y, Kwok RT. K, Yuan WZ, Xie J, Rogach AL, Tang BZ. Mater. Today 2020; 32: 275
  • 16 Li H, Gu J, Wang Z, Wang J, He F, Li P, Tao Y, Li H, Xie G, Huang W, Zheng C, Chen R. Nat. Commun. 2022; 13: 429
  • 17 Garain S, Sarkar S, Garain BC, Pati SK, George SJ. Angew. Chem. Int. Ed. 2022; 61: e202115773
  • 18 Huang Z, He Z, Ding B, Tian H, Ma X. Nat. Commun. 2022; 13: 7841
  • 19 An S, Gao L, Hao A, Xing P. ACS Nano 2021; 15: 20192
  • 20 Hirata S, Vacha M. J. Phys. Chem. Lett. 2016; 7: 1539
  • 21 Brock CP, Schweizer WB, Dunitz JD. J. Am. Chem. Soc. 1991; 113: 9811
  • 22 Wu X, Huang CY, Chen DG, Liu D, Wu C, Chou KJ, Zhang B, Wang Y, Liu Y, Li EY, Zhu W, Chou PT. Nat. Commun. 2020; 11: 2145
  • 23 Huang W, Zhou K, Zhao E, He Z. ChemRxiv 2023; preprint; DOI: 10.26434/chemrxiv-2023-jdn03.
  • 24 Patil Y, Demangeat C, Favereau L. Chirality 2023; 35: 390
  • 25 Zhong H, Zhao B, Deng J. Adv. Opt. Mater. 2023; 11: 2202787
  • 26 Liu R, Ding B, Liu D, Ma X. Chem. Eng. J. 2021; 421: 129732
  • 27 Gu L, Ye W, Liang X, Lv A, Ma H, Singh M, Jia W, Shen Z, Guo Y, Gao Y, Chen H, Wang D, Wu Y, Liu J, Wang H, Zheng YX, An Z, Huang W, Zhao Y. J. Am. Chem. Soc. 2021; 143: 18527
  • 28 Huang A, Huang J, Luo H.-Y, Luo Z.-W, Wang P, Wang P, Guan Y, Xie H.-L. J. Mater. Chem. C 2023; 11: 4104
  • 29 Zhang DW, Li M, Chen CF. Angew. Chem. Int. Ed. 2022; 61: e202213130
    • 30a Kabe R, Adachi C. Nature 2017; 550: 384
    • 30b Chen C, Chi Z, Chong KC, Batsanov AS, Yang Z, Mao Z, Yang Z, Liu B. Nat. Mater. 2021; 20: 175
    • 30c Chen B, Huang W, Nie X, Liao F, Miao H, Zhang X, Zhang G. Angew. Chem. Int. Ed. 2021; 60: 16970
    • 30d Xiao F, Gao H, Lei Y, Dai W, Liu M, Zheng X, Cai Z, Huang X, Wu H, Ding D. Nat. Commun. 2022; 13: 186
  • 31 Wang T, Liu M, Feng W, Cao R, Sun Y, Wang L, Liu D, Wang Y, Wang T, Hu W. Adv. Opt. Mater. 2023; 11: 2202613
  • 32 Xie Y, Liu H, Li Z, Zhang X, Song L, Zhou K, Yuan F, You H, Zhao E, He Z. Sci. China Chem. 2023; in press DOI: 10.1007/s11426-023-1560-0.
  • 33 Liang X, Liu TT, Yan ZP, Zhou Y, Su J, Luo XF, Wu ZG, Wang Y, Zheng YX, Zuo JL. Angew. Chem. Int. Ed. 2019; 58: 17220
  • 34 Dhbaibi K, Morgante P, Vanthuyne N, Autschbach J, Favereau L, Crassous J. J. Phys. Chem. Lett. 2023; 14: 1073
  • 35 Tanaka S, Sakamaki D, Haruta N, Sato T, Gon M, Tanaka K, Fujiwara H. J. Mater. Chem. C 2023; 11: 4846
  • 36 Xu M, Wu X, Yang Y, Ma C, Li W, Yu H, Chen Z, Li J, Zhang K, Liu S. ACS Nano 2020; 14: 11130
  • 37 Ma S, Ma H, Yang K, Tan Z, Zhao B, Deng J. ACS Nano 2023; 17: 6912
  • 38 Wang L, Hao A, Xing P. ACS Appl. Mater. Interfaces 2022; 14: 44902
  • 39 Zhao S, Li G, Guo Q, Wang Y, Zhang M, Zhou Y, Jin S, Zhu M, Zhuang T. Adv. Opt. Mater. 2023; 2202933