Subscribe to RSS
DOI: 10.1055/a-2107-6485
p-TSA·H2O-Catalyzed Synthesis of 2,3-Diarylquinoline Derivatives via One-Pot Three-Component Reaction
We express our sincere gratitude to the Department of Science and Technology, New Delhi for financial support (Grant No.: CRG/2022/002751/OC) to A.T.K. Simra Faraz is grateful to CSIR, New Delhi for her research fellowship [Sanction No.: 09/0731(13234)/2022-EMR-I].

This work is dedicated to my mentor Prof. Goverdhan Mehta, University Distinguished Professor & Dr. Kallam Anji Reddy Chair Professor, School of Chemistry, University of Hyderabad, on the occasion of his 80th Birthday
Abstract
An environmentally benign synthesis of 2,3-diarylquinolines is reported via a one-pot three-component reaction from arylamines, benzaldehyde, and styrene oxide in the presence of 20 mol% p-TSA·H2O at 120 °C. This protocol does not require metal catalysts, additives, and extra oxidants. Mechanistic studies confirm the crucial role of p-TSA·H2O and the use of air as the sole oxidant makes this transformation very attractive. The salient feature of this protocol is easy handling, broad substrates scope, shorter reaction time, high atom economy, regioselectivity, and good yields; and the formation of one C–N and two C–C bonds takes place in a single step.
Keywords
arylamines - styrene oxides - aromatic aldehydes - 2,3-diaryl quinolines - environmentally benign synthesis - p-TSA·H2O - atomic economy - three-component reactionSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2107-6485.
- Supporting Information
Publication History
Received: 15 February 2023
Accepted after revision: 07 June 2023
Accepted Manuscript online:
07 June 2023
Article published online:
05 July 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Touré BB, Hall DG. Chem. Rev. 2009; 109: 4439
- 1b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083
- 1c Cioc RC, Ruijter E, Orru RV. A. Green Chem. 2014; 16: 2958
- 3a Insuasty D, Vidal O, Bernal A, Marquez E, Guzman J, Insuasty B, Quiroga J, Svetaz L, Zacchino S, Puerto G, Abonia R. Antibiotics (Basel) 2019; 8: 239
- 3b Nqoro X, Tobeka N, Aderibigbe BA. Molecules 2017; 22: 2268
- 3c da Rosa Monte Machado G, Diedrich D, Ruaro TC, Zimmer AR, Lettieri Teixeira M, de Oliveira LF, Jean M, Van de Weghe P, de Andrade SF, Baggio Gnoatto SC, Fuentefria AM. Braz. J. Microbiol. 2020; 51: 1691
- 3d Fakhfakh MA, Fournet A, Prina E, Mouscadet J.-F, Franck X, Hocquemiller R, Figadère B. Bioorg. Med. Chem. Lett. 2003; 11: 5013
- 3e Vangapandu S, Jain M, Jain R, Kaur S, Pal Singh P. Bioorg. Med. Chem. 2004; 12: 2501
- 3f Mukherjee S, Pal M. Curr. Med. Chem. 2013; 20: 4386
- 3g De la Guardia C, Stephens DE, Dang HT, Quijada M, Larionov OV, Lleonart R. Molecules 2018; 23: 672
- 3h Gao J, Tian Z, Yang X. Biosci. Trends. 2020; 14: 72
- 4a Dos Santos GC, Servilha RO, de Oliveira EF, Lavarda FC, Ximenes VF, da Silva-Filho LC. J. Fluoresc. 2017; 27: 1709
- 4b Shao X, Liu W, Guo R, Chen J, Zhou N. Dyes Pigm. 2021; 188: 109198
- 5a Skraup ZH. Monatsh. Chem. 1880; 1: 31
- 5b Li JJ. Name Reactions: A Collection of Detailed Mechanisms and Synthetic Applications, 5th ed. Springer International Publishing; Cham: 2014: 157
- 5c Zerong W. Comprehensive Organic Name Reactions and Reagents, Wiley: Hoboken, 2010 . No. 198;
- 5d Li JJ. Name Reactions: A Collection of Detailed Reaction Mechanisms. Springer; Berlin: 2006: 144
- 6a Kumar GR, Kumar R, Rajesh M, Reddy MS. Chem. Commun. 2018; 54: 759
- 6b San Jang S, Kim YH, Youn SW. Org. Lett. 2020; 22: 9151
- 6c Xiang J.-C, Wang Z.-X, Cheng Y, Xia S.-Q, Wang M, Tang B.-C, Wu Y.-D, Wu A.-X. J. Org. Chem. 2017; 82: 9210
- 6d Saunthwal RK, Patel M, Verma AK. Org. Lett. 2016; 18: 2200
- 6e Ali S, Khan AT. Org. Biomol. Chem. 2021; 19: 3255