Synlett 2023; 34(17): 2037-2041
DOI: 10.1055/a-2108-9626
letter

Visible-Light-Induced C-3 Difluoroalkylation of Quinoxalin-2(1H)-ones with Difluoroiodane(III) Reagents under Catalyst-Free Conditions

Haijuan Qin
a   Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. of China
,
Ningning Zhou
b   China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. of China
,
Kun Wang
b   China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. of China
,
Ying Zhang
b   China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. of China
,
Xia Zhao
c   College of Chemistry, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, Tianjin Normal University, Tianjin 300387, P. R. of China
,
Kui Lu
a   Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. of China
b   China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, P. R. of China
› Author Affiliations
This work was supported by National Natural Science Foundation of China (Grant no. 22077095).


Abstract

A visible-light-induced radical difluoroalkylation of quinoxalin-2(1H)-ones by hypervalent-iodine-based reagents was developed. To facilitate the final oxidative step, [bis(trifluoroacetoxy)iodo]benzene (PIFA) was employed as an oxidant. Moreover, a one-pot protocol for this transformation was realized by generating the difluoroalkylation reagent in situ. The readily accessible reagents and the mild reaction conditions make this reaction an alternative and practical strategy for the synthesis of C(3)-difluoroalkylated quinoxalin-2(1H)-ones.

Supporting Information



Publication History

Received: 28 March 2023

Accepted after revision: 12 June 2023

Accepted Manuscript online:
12 June 2023

Article published online:
18 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Patel M, McHugh RJ. Jr, Cordova BC, Klabe RM, Erickson-Viitanen S, Trainor GL, Rodgers JD. Bioorg. Med. Chem. Lett. 2000; 10: 1729
    • 1b Carta A, Piras S, Loriga G, Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
    • 1c Li X, Yang K.-h, Li W.-l, Xu W.-f. Drugs Future. 2006; 31: 979
    • 1d Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev. Med. Chem. 2018; 18: 392
    • 2a Carta A, Loriga M, Piras S, Paglietti G, La Colla P, Busonera B, Collu G, Loddo R. Med. Chem. 2006; 2: 113
    • 2b Meyer E, Joussef AC, De Souza L. deB. P. Synth. Commun. 2006; 36: 729
    • 2c Chen D, Bao W. Adv. Synth. Catal. 2010; 352: 955
    • 2d Weïwer M, Spoonamore J, Wei JQ, Guichard B, Ross NT, Masso K, Silkworth W, Dandapani S, Palmer M, Scherer CA, Stern AM, Schreiber SL, Munoz B. ACS Med. Chem. Lett. 2012; 3: 1034
    • 2e Pereira JA, Pessoa AM, Cordeiro MN. D. S, Fernandes R, Prudêncio C, Noronha JP, Vieira M. Eur. J. Med. Chem. 2015; 97: 664
    • 2f Khattab SN, Abdel Moneim SA. H, Bekhit AA, El Massry AM, Hassan SY, El-Faham A, Ali Ahmed HE, Amer A. Eur. J. Med. Chem. 2015; 93: 308
    • 2g Son J.-H, Zhu JS, Phuan P.-W, Cil O, Teuthorn AP, Ku CK, Lee S, Verkman AS, Kurth MJ. J. Med. Chem. 2017; 60: 2401
    • 2h Ke Q, Yan G, Yu J, Wu X. Org. Biomol. Chem. 2019; 17: 5863

      For reviews, see:
    • 3a Monika M, Selvakumar S. Synthesis. 2019; 51: 4113
    • 3b Sun K, Xiao F, Yu B, He W.-M. Chin. J. Catal. 2021; 41: 1921 ; see also ref. 2 (i)

      For selected recent examples, see:
    • 4a Niu K, Ding L, Zhou P, Hao Y, Liu Y, Song H, Wang Q. Green Chem. 2021; 23: 3246
    • 4b Xu J, Huang L, He L, Ni Z, Shen J, Li X, Chen K, Li W, Zhang P. Green Chem. 2021; 23: 2123
    • 4c Pei C, Chen X, Li L, Li J, Zou D, Wu Y, Wu Y. Tetrahedron Lett. 2021; 83: 153409
    • 4d Wang L, Chen Z, Fan G, Liu X, Liu P. J. Org. Chem. 2022; 87: 14580
    • 4e Liu H.-F, He M.-X, Tang H.-T. Org. Chem. Front. 2022; 9: 5955
    • 4f Samanta RK, Meher P, Murarka S. J. Org. Chem. 2022; 87: 10947
    • 4g Li J, Hu J, Xiao Y, Yin K, Dan W, Fan S, Jin F, Wu H, Zhang R, Li J. Tetrahedron Lett. 2022; 88: 153511
    • 4h Yang X, Meng W.-D, Xu X.-H, Huang Y. Org. Chem. Front. 2021; 8: 6597
    • 4i Wang Z, Liu Q, Liu R, Ji Z, Li Y, Zhao X, Wei W. Chin. Chem. Lett. 2022; 33: 1479
    • 5a Müller K, Faeh C, Diederich F. Science. 2007; 317: 1881
    • 5b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 5c Fluorine in Medicinal, Chemistry and, Chemical Biology. Ojima I. Wiley–Blackwell; Chichester: 2009
    • 5d Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 5e Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 5f Kirsch P. Modern Fluoroorganic. Chemistry; Synthesis, Reactivity: Wiley-VCH
    • 5g Wang J, Sánchez-Roselló M, Aceña J, Pozo C, Sorochinsky AE, Fustero S. Soloshonok V. A., Liu H. 2014; 114: 2432
    • 5h Liu Q, Ni C, Hu J. Natl. Sci. Rev. 2017; 4: 303
    • 5i Emerging Fluorinated Motifs: Synthesis, Properties and Applications. Cahard D, Ma J.-A. Wiley-VCH; Weinheim: 2020
    • 6a Dou G.-Y, Jiang Y.-Y, Xu K, Zeng C.-C. Org. Chem. Front. 2019; 6: 2392
    • 6b Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Asian J. Org. Chem. 2019; 8: 1942
    • 6c Xue W, Su Y, Wang K.-H, Cao L, Feng Y, Zhang W, Huang D, Hu Y. Asian J. Org. Chem. 2019; 8: 887
    • 6d Mi X, Cui B, Zhang J, Pi C, Cui X. Tetrahedron Lett. 2022; 93: 153693
  • 7 Wei Z, Qi S, Xu Y, Liu H, Wu J, Li H, Xia C, Duan G. Adv. Synth. Catal. 2019; 361: 5490
  • 8 Hong G, Yuan J, Fu J, Pan G, Wang Z, Yang L, Xiao Y, Mao P, Zhang X. Org. Chem. Front. 2019; 6: 1173
  • 9 Jin C, Zhuang X, Sun B, Li D, Zhu R. Asian J. Org. Chem. 2019; 8: 1490
  • 10 Wang L, Liu H, Li F, Zhao J, Zhang H, Zhang Y. Adv. Synth. Catal. 2019; 361: 2354
  • 11 Liu J, Huang Z, Wang C, Deng Z, Xu X, Zeng R, Zhao Y. Eur. J. Org. Chem. 2023; 26: e202300129
  • 12 Wei Q, Lei L, Zhou T, Li A, Liu J, Zhao X, Lu K. Tetrahedron. 2021; 91: 132217
    • 13a Lu K, Lei L, Wei Q, Zhou T, Jia X, Li Q, Zhao X. Tetrahedron Lett. 2021; 67: 152864
    • 13b Lu K, Zhou T, Jia X, Wei P, Lei L, Xi X, Liu J, Zhao X. Asian J. Org. Chem. 2021; 10: 563
    • 13c Zhou T, Liu R, Wang X, Rui M, Zhao X, Lu K. Asian J. Org. Chem. 2022; 11: e202200154
    • 13d Wang X, Liu R, Zhang S, Zhou T, Zhao X, Lu K. Tetrahedron Lett. 2022; 96: 153761
    • 13e Feng J, Jia X, Zhang S, Lu K, Cahard D. Org. Chem. Front. 2022; 9: 3598
  • 14 Zhou N, Liu R, Zhang C, Wang K, Feng J, Zhao X, Lu K. Org. Lett. 2022; 24: 3576
  • 15 Zhou N, Wang K, Zhao T, Liu R, Rui M, Zhao X, Feng J, Lu K. Asian J. Org. Chem. 2022; 11: e202200386
  • 16 Liu R, Zhou N, Zhao T, Zhang Y, Wang K, Zhao X, Lu K. J. Org. Chem. 2023; 88: 483
  • 17 Difluoroalkylated Quinoxalin-2(1H)-ones 3aaa; General Procedure A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with the appropriate quinoxalin-2(1H)-one 1 (0.30 mmol), iodane 2 (0.60 mmol, 2.0 equiv), and PIFA (258 mg, 0.45 mmol). Anhyd 1,4-dioxane (1.5 mL) was added from a syringe under argon, and the mixture was stirred and irradiated by 24 W blue LEDs at 40 °C for 12 h. The mixture was then diluted with H2O (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic phase was dried (Na2SO4) and concentrated, and the residue was purified by chromatography (silica gel, PE–EtOAc). Ethyl Difluoro(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)acetate (3a) Yellow solid; yield: 81 mg (96%). 1H NMR (400 MHz, CDCl3): δ = 8.02 (dd, J = 8.1, 1.5 Hz, 1 H), 7.71 (ddd, J = 8.7, 7.3, 1.5 Hz, 1 H), 7.50–7.39 (m, 2 H), 4.42 (q, J = 7.1 Hz, 2 H), 3.72 (s, 3 H), 1.37 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.3 (t, J = 31.0 Hz, 1 C), 152.72, 147.8 (t, J = 24.0 Hz, 1 C), 134.1, 132.8, 131.6, 131.5, 124.5, 114.0, 109.6 (t, J = 251.0 Hz, 1 C), 61.0, 29.3, 14.1. 19F NMR (376 MHz, CDCl3): δ = –110.60 (s, 2 F).