Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2024; 35(01): 109-112
DOI: 10.1055/a-2109-0055
DOI: 10.1055/a-2109-0055
cluster
Functional Dyes
Dual Responses of Fluorescence and Circular Dichroism for Antibiotics by a Cationic Cage in Water
This work was supported by the National Natural Science Foundation of China (22122108 and 21971208), the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province of China (2021JC-37), and the Fok Ying Tong Education Foundation (171010). L.C. thanks Xi’an Key Laboratory of Functional Supramolecular Structure and Materials (CFZKFKT23001) and the Shaanxi Fundamental Science Research Project for Chemistry and Biology (22JHQ073).
Abstract
A tetraphenylethene (TPE)-based cationic cage (1) can form a 1:2 host–guest complex with antibiotics in water and imparts dual responses of fluorescence and circular dichroism (CD) to antibiotics based on the fluorescence and adaptive chiral conformation of the TPE units. Moreover, the host–guest complexes 1⊃(antibiotic)2 exhibited good antibacterial activity.
Key words
chiral response - host–guest recognition - tetraphenylethene-based cationic cage - antibiotics - antibacterial activitySupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2109-0055.
- Supporting Information
Publication History
Received: 04 May 2023
Accepted after revision: 12 June 2023
Accepted Manuscript online:
12 June 2023
Article published online:
03 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Danner M.-C, Robertson A, Behrends V, Reiss J. Sci. Total Environ. 2019; 664: 793
- 1b Oniciuc E.-A, Likotrafiti E, Alvarez-Molina A, Prieto M, López M, Alvarez-Ordóñez A. Curr. Opin. Food Sci. 2019; 30: 21
- 1c Årdal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K, Rex JH, Sumpradit N. Nat. Rev. Microbiol. 2020; 18: 267
- 2 Li X, Bai H, Yang Y, Yoon J, Wang S, Zhang X. Adv. Mater. (Weinheim, Ger.) 2019; 31: 1805092
- 3a Li W, Xu W, Zhang S, Li J, Zhou J, Tian D, Cheng J, Li H. J. Agric. Food Chem. 2022; 70: 12746
- 3b Gao L, Wang H, Zheng B, Huang F. Giant 2021; 7: 100066
- 4 Agnes M, Thanassoulas A, Stavropoulos P, Nounesis G, Miliotis G, Miriagou V, Athanasiou E, Benkovics G, Malanga M, Yannakopoulou K. Int. J. Pharm. (Amsterdam, Neth.) 2017; 531: 480
- 5 Wang T, Wang C, Zhou S, Xu J, Jiang W, Tan L, Fu J. Chem. Mater. 2017; 29: 8325
- 6 Xu D.-A, Zhou Q.-Y, Dai X, Ma X.-K, Zhang Y.-M, Xu X, Liu Y. Chin. Chem. Lett. 2022; 33: 851
- 7 Guo S, Huang Q, Chen Y, Wei J, Zheng J, Wang L, Wang Y, Wang R. Angew. Chem. Int. Ed. 2021; 60: 618
- 8 Zhou C, Zou H, Sun C, Li Y. Food Chem. 2021; 361: 130109
- 9 Liu H, Gan N, Chen Y, Li T, Cao Y. RSC Adv. 2017; 7: 6800
- 10 Blasco C, Di Corcia A, Picó Y. Food Chem. 2009; 116: 1005
- 11 Moreno-González D, Lara FJ, Jurgovská N, Gámiz-Gracia L, García-Campaña AM. Anal. Chim. Acta 2015; 891: 321
- 12 Wang X, Xing G, Li N, Xie Y, Lin L. Chin. Chem. Lett. 2022; 34: 108110
- 13a Cheng L, Tian P, Duan H, Li Q, Song X, Li A, Cao L. Chem. Sci. 2023; 14: 833
- 13b Duan Y, Wang J, Cheng L, Duan H, Tian P, Zhang Y, Cao L. Org. Biomol. Chem. 2022; 20: 3998
- 13c Duan H, Cao F, Zhang M, Gao M, Cao L. Chin. Chem. Lett. 2022; 33: 2459
- 13d Cheng L, Liu K, Duan Y, Duan H, Li Y, Gao M, Cao L. CCS Chem. 2020; 2: 2749
- 14 Yan L, Gopal A, Kashif S, Hazelton P, Lan M, Zhang W, Chen X. Chem. Eng. J. (Amsterdam, Neth.) 2022; 435: 134975
- 15 Renner LD, Weibel DB. MRS Bull. 2011; 36: 347