Subscribe to RSS
DOI: 10.1055/a-2109-0183
Ruthenium(II)-Catalyzed C–H Annulation of Mandelic Acids with Internal Alkynes to Construct Isocoumarins
This work was financially supported by the Natural Science Foundation of Guangxi (project no. 2020GXNSFAA159125) and by the Science Foundation of Yulin Normal University (project no. G2019ZK17).
Abstract
A series of isocoumarins were synthesized by a one-pot cyclization reaction with mandelic acids and internal alkynes as raw materials, [RuCl2(p-cymene)]2 as a catalyst, and Cu(OAc)2·H2O as an oxidant under reflux conditions in air. By using the established efficient and reliable reaction conditions, a range of substrates were explored, and it was found that both aromatic aldehydes and aromatic acids also reacted smoothly in this system to give moderate yields of the target products. Furthermore, the mandelic acids were shown to be converted into the corresponding benzoic acids as intermediates in the reaction.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2109-0183.
- Supporting Information
Publication History
Received: 04 May 2023
Accepted after revision: 12 June 2023
Accepted Manuscript online:
12 June 2023
Article published online:
21 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Mali RS, Babu KN. J. Org. Chem. 1998; 63: 2488
- 2 Ramanan M, Sinha S, Sudarshan K, Aidhen IS, Doble M. Eur. J. Med. Chem. 2016; 124: 428
- 3 Sudarshan K, Boda AK, Dogra S, Bose I, Yadav PN, Aidhen IS. Bioorg. Med. Chem. Lett. 2019; 29: 585
- 4 Simic M, Paunovic N, Boric I, Randjelovic J, Vojnovic S, Nikodinovic-Runic J, Pekmezovic M, Savic V. Bioorg. Med. Chem. Lett. 2016; 26: 235
- 5 Babar TM, Naseer MM, Rauf MK, Pervez H, Ebihara M, Rama NH. Chin. Chem. Lett. 2014; 25: 1282
- 6 Pochet L, Frédérick R, Masereel B. Curr. Pharm. Des. 2004; 10: 3781
- 7 Heynekamp JJ, Hunsaker LA, Vander Jagt TA, Deck LM, Vander Jagt DL. BMC Chem. Biol. 2006; 6: 1
- 8 Bauta WE, Lovett DP, Cantrell WR, Burke BD. J. Org. Chem. 2003; 68: 5967
- 9 Roy S, Roy S, Neuenswander B, Hill D, Larock RC. J. Comb. Chem. 2009; 11: 1128
- 10 Xi C, Cai S, Wang F. Synthesis 2012; 44: 1892
- 11 Kavala V, Wang C.-C, Barange DK, Kuo CW, Lei P.-M, Yao C.-F. J. Org. Chem. 2012; 77: 5022
- 12 Guo X.-X. J. Org. Chem. 2013; 78: 1660
- 13 Shahzad SA, Venin C, Wirth T. Eur. J. Org. Chem. 2010; 3465
- 14 Umeda R, Yoshikawa S, Yamashita K, Nishiyama Y. Heterocycles 2015; 91: 2172
- 15 Jiang G, Li J, Zhu C, Wu W, Jiang H. Org. Lett. 2017; 19: 4440
- 16 Liang Y, Xie Y.-X, Li J.-H. Synthesis 2007; 400
- 17 Kita Y, Yata T, Nishimoto Y, Chiba K, Yasuda M. Chem. Sci. 2018; 9: 6041
- 18 Saikia P, Gogoi S. Adv. Synth. Catal. 2018; 360: 2063
- 19 Muthuraja P, Usman R, Sajeev R, Gopinath P. Org. Lett. 2021; 23: 6014
- 20 Dastbaravardeh N, Toba T, Farmer ME, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 9877
- 21 Zhu C, Lin X, Wu J, Wei Y. Anal. Sci. 2002; 18: 1055
- 22 Manallack DT, Prankerd RJ, Nassta GC, Ursu O, Oprea TI, Chalmers DK. ChemMedChem 2013; 8: 242
- 23 Feng H, Ding J, Zhu D, Liu X, Xu X, Zhang Y, Zang S, Wang D.-C, Liu W. J. Am. Chem. Soc. 2014; 136: 14694
- 24 Sehnal P, Taylor RJ. K, Fairlamb IJ. S. Chem. Rev. 2010; 110: 824
- 25 Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
- 26 Zhu W, Luo Z, Chen J, Liu C, Yang L, Dickie DA, Liu N, Zhang S, Davis RJ, Gunnoe TB. ACS Catal. 2019; 9: 7457
- 27 Luo Z, Whitcomb CA, Kaylor N, Zhang Y, Zhang S, Davis RJ, Gunnoe TB. ChemCatChem 2021; 13: 260
- 28 Tao L.-M, Li C.-H, Chen J, Liu H. J. Org. Chem. 2019; 84: 6807
- 29 Duarah G, Kaishap PP, Begum T, Gogoi S. Adv. Synth. Catal. 2019; 361: 654
- 30 Mukherjee V, Singh NP, Yadav RA. Spectrochim. Acta, Part A 2009; 74: 1107
- 31 Green JH. S. Spectrochim. Acta, Part A 1977; 33: 575
- 32 Belkov MV, Brinkevich SD, Samovich SN, Skornyakov IV, Tolstorozhev GB, Shadyro OI. J. Appl. Spectrosc. 2012; 78: 794
- 33 Feng Q, Song Q. J. Org. Chem. 2014; 79: 1867
- 34 Song Q, Feng Q, Zhou M. Org. Lett. 2013; 15: 5990
- 35 Ackermann L, Pospech J, Graczyk K, Rauch K. Org. Lett. 2012; 14: 930
- 36 Warratz S, Kornhaass C, Cajaraville A, Niepötter B, Stalke D, Ackermann L. Angew. Chem. Int. Ed. Engl. 2015; 54: 5513
- 37 Chinnagolla RK, Jeganmohan M. Chem. Commun. 2012; 48: 2030
- 38 Wu J, Qian B, Liu Y, Shang Y. ChemistrySelect 2020; 5: 10269. 3,4-Diphenyl-1H-isochromen-1-one (3a); Typical Procedure Mandelic acid (1a; 0.3 mmol), diphenylacetylene (2a; 0.2 mmol), [RuCl2(p-cymene)]2 (0.03 mmol, 15 mol%), and Cu(OAc)2·H2O (0.2 mmol, 1 equiv) were combined with DMF (0.5 mL) in a 25 mL round-bottomed flask, and the resulting mixture was stirred at 110 ℃ under reflux for 12 h. The mixture was then cooled to r.t. and extracted with H2O (20 mL) and CH2Cl2 (3 × 20 mL). The organic phase was collected, dried (Na2SO4), filtered, and concentrated in a rotary evaporator. The crude product was purified by column chromatography [silica gel, PE–EtOAc (20:1)] to give a white solid; yield: 63%. 1H NMR (500 MHz, CDCl3): δ = 8.42 (d, J = 7.8 Hz, 1 H), 7.64 (t, J = 7.5 Hz, 1 H), 7.53 (t, J = 7.4 Hz, 1 H), 7.42 (d, J = 5.5 Hz, 3 H), 7.34 (d, J = 7.2 Hz, 2 H), 7.29–7.18 (m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 162.30, 150.94, 138.86, 134.67, 134.32, 132.92, 131.25, 129.57, 129.24, 129.09, 128.97, 128.15, 128.13, 127.88, 125.38, 120.45, 116.91.