Synthesis 2023; 55(19): 3186-3194
DOI: 10.1055/a-2114-7802
paper

Transition-Metal-Free and Selective Deconstructive Carbonyl Olefination of α-Hydroxy Ketones: A Complementary Approach to Knoevenagel Reaction

Sandeep Sandeep
a   Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
b   Department of Chemistry, Panjab University, Chandigarh 160014, India
,
b   Department of Chemistry, Panjab University, Chandigarh 160014, India
,
Chayawan Chayawan
c   Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh 177005, India
,
Ganga R. Chaudhary
b   Department of Chemistry, Panjab University, Chandigarh 160014, India
,
Paloth Venugopalan
b   Department of Chemistry, Panjab University, Chandigarh 160014, India
,
Anil Kumar
a   Department of Applied Sciences, University Institute of Engineering and Technology, Panjab University, Chandigarh 160014, India
› Author Affiliations
A.K. is grateful to the Science and Engineering Research Board, India, for the SERB-TARE project (Grant Number TAR/2022/000045).


Abstract

While the carbonyl olefination has been extensively studied and well documented, use of α-hydroxy ketones as precursors for the carbonyl olefination is not reported, till date. Herein, a transition-metal-free and selective Knoevenagel-type deconstructive carbonyl olefination of α-hydroxy ketones using arylacetonitriles under mild reaction conditions is presented. The reaction affords valuable scaffolds of acrylonitriles with the use of α-hydroxy ketones as precursors for carbonyl olefination.

Supporting Information



Publication History

Received: 21 May 2023

Accepted after revision: 21 June 2023

Accepted Manuscript online:
21 June 2023

Article published online:
17 July 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Junjiao W, Yuyu L, Yongwei S, Zhenli C, Ke-Hu W, Danfeng H, Yulai H. Chin. J. Org. Chem. 2022; 42: 2300
  • 2 Liang H, Liu H, Jiang X. Synlett 2016; 27: 2774
    • 3a Palomo C, Oiarbide M, García JM. Chem. Soc. Rev. 2012; 41: 4150
    • 3b Cao J, Su YX, Zhang XY, Zhu SF. Angew. Chem. Int. Ed. 2023; 62: e202212976
    • 4a Liu H, Qi C, Wang L, Guo Y, Li D, Jiang H. J. Org. Chem. 2021; 86: 9610
    • 4b Qi C, Peng Y, Wang L, Ren Y, Jiang H. J. Org. Chem. 2018; 83: 11926
    • 4c He H, Qi C, Hu X, Ouyang L, Xiong W, Jiang H. J. Org. Chem. 2015; 18: 4957
    • 4d Babu VN, Murugan A, Katta N, Devatha S, Sharada DS. J. Org. Chem. 2019; 84: 6631
    • 5a Chen L, Zhou J. Chem. Asian J. 2012; 7: 2510
    • 5b Zhou F, Cao ZY, Zhang J, Yang HB, Zhou J. Chem. Asian J. 2012; 7: 233
    • 5c Zhou F, Ding M, Zhou J. Org. Biomol. Chem. 2012; 10: 3178
    • 5d Yin XP, Zhu L, Zhou J. Adv. Synth. Catal. 2018; 360: 1116
    • 5e Zhu F, Zhou F, Cao ZY, Wang C, Zhang YX, Wang CH, Zhou J. Synthesis 2012; 44: 3129
    • 6a Kumar A, Mondal S, Sandeep, Venugopalan P, Kumar A, Banerjee S. J. Am. Chem. Soc. 2022; 144: 3347
    • 6b Sandeep, Venugopalan P, Kumar A. Eur. J. Org. Chem. 2020; 2530
    • 6c Kumar A, Singh TV, Thomas SP, Venugopalan P. Eur. J. Org. Chem. 2015; 1226
    • 6d Kumar A, Sharma RK, Singh TV, Venugopalan P. Tetrahedron 2013; 69: 10724
    • 7a Dumeunie R, Marko IE. Modern Carbonyl Olefination . Tekeda T. Wiley-VCH; Weinheim: 2004: 104-105
    • 7b Blakemore PR. Olefination of Carbonyl Compounds by Main-Group Element Mediators. In Comprehensive Organic Synthesis II, Vol. 1. Knochel P. Elsevier; Amsterdam: 2014: 516-608
    • 8a Wittig G, Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
    • 8b Wittig G, Schollkopf U. Chem. Ber. 1954; 87: 1318
    • 9a Horner L, Hoffman H, Wippel HG. Chem. Ber. 1958; 91: 61
    • 9b Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
    • 9c Peterson DJ. J. Org. Chem. 1968; 33: 780
    • 9d Julia M, Paris JM. Tetrahedron Lett. 1973; 14: 4833
    • 9e Tebbe FN, Parshall GW, Reddy GS. J. Am. Chem. Soc. 1978; 100: 3611
  • 10 DiBiase SA, Lipisko BA, Haag A, Wolak RA, Gokel GW. J. Org. Chem. 1979; 44: 4640
    • 11a Paudel K, Xu S, Ding K. Org. Lett. 2021; 23: 5028
    • 11b Bains AK, Ankit Y, Adhikari D. Org. Lett. 2021; 23: 2019
    • 11c Yadav V, Landge VG, Subaramanian M, Balaraman E. ACS Catal. 2020; 10: 947
    • 11d Thiyagarajan S, Gunanathan C. ACS Catal. 2018; 8: 2473
    • 11e Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
    • 12a Filippini D, Silvi M. Nat. Chem. 2022; 14: 66
    • 12b Niyomchon S, Oppedisano A, Aillard P, Maulide N. Nat. Commun. 2017; 8: 1091
    • 12c Merad J, Grant PS, Stopka T, Sabbatani J, Meyrelles R, Preinfalk A, Matyasovsky J, Maryasin B, González L, Maulide N. J. Am. Chem. Soc. 2022; 144: 12536
    • 12d Liu X, Sotiropoulos J.-M, Taillefer M. Eur. J. Org. Chem. 2022; e202200631
    • 12e Ainembabazi D, Reid C, Chen A, An N, Kostal J, Voutchkova-Kostal A. J. Am. Chem. Soc. 2020; 142: 696
  • 13 Tan OU, Zengin M. Arch. Pharm. (Weiheim) 2022; 355: e2100383
  • 14 Zhou ZZ, Liu M, Lv L, Li CJ. Angew. Chem. Int. Ed. 2018; 57: 2616
  • 15 Kulp SS, Caldwell CB. J. Org. Chem. 1980; 45: 171
  • 16 Oh K.-B, Kim S.-H, Lee J, Cho W.-J, Lee T, Kim S. J. Med. Chem. 2004; 47: 2418
  • 17 Li J, Liu Y, Tang W, Xue D, Li C, Xiao J, Wang C. Chem. Eur. J. 2017; 23: 14445
  • 18 Chakraborty S, Das UK, Ben-David Y, Milstein D. J. Am. Chem. Soc. 2017; 139: 11710
  • 19 Choudhuri K, Pramanik M, Mal P. Eur. J. Org. Chem. 2020; 3906
  • 20 Mukherjee N, Parida PK, Santra A, Ghosh T, Dutta A, Jana K, Misra AK, Babu SP. S. Free Radical Biol. Med. 2016; 93: 130
  • 21 Ye R, Zhu M, Yan X, Long Y, Xia Y, Zhou X. ACS Catal. 2021; 11: 8678
  • 22 Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu J. Catal. Commun. 2005; 6: 753
  • 23 Zhang Y, Yue X, Liang C, Zhao J, Yu W, Zhang P. Tetrahedron Lett. 2021; 80: 153321
  • 24 Cai M, Peng J, Hao W, Ding G. Green Chem. 2011; 13: 190
  • 25 Yi W-B, Cai C. J. Fluorine Chem. 2005; 126: 1191
  • 26 Bernini R, Coratti A, Provenzano G, Fabrizi G, Tofani D. Tetrahedron 2005; 61: 1821
  • 27 Kuriyama M, Shimazawa R, Shirai R. J. Org. Chem. 2008; 73: 1597