Subscribe to RSS
DOI: 10.1055/a-2122-5324
Die Urinuntersuchung bei Hund und Katze, Teil 2: Urinsedimentanalyse
Urinalysis in dogs and cats, part 2: Urine sediment analysis
Zusammenfassung
Die Urinsedimentanalyse ist Teil einer Routine-Urinuntersuchung und dient der Identifikation von unlöslichen Urinbestandteilen. Sie wird vor allem für die Diagnose von Harnwegserkrankungen eingesetzt, kann aber auch bei der Diagnostik von systemischen Erkrankungen oder Vergiftungen hilfreich sein. Die Urinsedimentanalyse sollte idealerweise an frischem Urin durchgeführt werden, da es lagerungsbedingt zu Änderungen der Zellmorphologie, zur Zelllyse oder in-vitro-Kristallbildung kommen kann. Bei der manuellen Urinsedimentanalyse eignet sich ein ungefärbtes Nasspräparat zur Identifikation und Quantifizierung von Urinsedimentbestandteilen. Die Anfertigung gefärbter Nass- oder Trockenpräparate kann zur genaueren Differenzierung von Zellen und zum Nachweis von Bakterien notwendig sein. Seit einigen Jahren stehen ebenso automatische Urinsedimentanalysegeräte in der Tiermedizin zur Verfügung. Sie bringen eine große Zeit- und Personalersparnis mit sich, jedoch ist eine Verifizierung der automatisch generierten Ergebnisse durch erfahrene Untersucher nach wie vor notwendig. Häufig identifizierte und klinisch relevante Urinsedimentbestandteile sind Erythrozyten, Leukozyten, verschiedene Epithelzellarten, Kristalle und Zylinder sowie Bakterien. Weiterhin können Parasiteneier, Pilzhyphen, Fetttröpfchen, Spermien, Fasern, Haare, Schleim, Pflanzenbestandteile und Kontaminationen aus der Umwelt im Urinsediment vorkommen und die Interpretation der Ergebnisse erschweren.
Abstract
Examination of the urine sediment is part of a routine urinalysis and is undertaken in order to identify insoluble particles in the urine. This procedure is mainly used in the context of diagnostic evaluation of urinary tract diseases, but may also be useful for the diagnosis of systemic diseases and intoxications. Analysis of fresh urine is recommended as changes in cell morphology, cell lysis and in vitro crystal formation may occur in the course of its storage. Manual urine sediment analysis is still performed in many veterinary practices. Native wet-mount preparations are suitable for the identification and quantification of urine sediment particles. The examination of stained wet-mount preparations or air-dried smears may be necessary to further differentiate cells and to identify bacteria. For several years, automatic urine sediment analyzers have been available in veterinary medicine. These save considerable time and staff resources, however verification of the automatically generated results by an experienced observer remains necessary. Urine sediment particles that are frequently identified and clinically relevant include red blood cells, white blood cells, different types of epithelial cells, crystals, and casts as well as bacteria. Furthermore, parasite eggs, fungal hyphae, lipid droplets, spermatozoa, fibres, hair, mucus, plant parts or environmental contaminations may be found in the urine sediment and result in a complication of the result interpretation.
Publication History
Received: 03 December 2022
Accepted: 20 March 2023
Article published online:
13 November 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag
Rüdigerstraße 14, 70469 Stuttgart,
Germany
-
Literatur
- 1 Osborne CA, Stevens JB. Urinalysis: a clinical Guide to compassionate Patient Care. Kansas: Bayer Corporation; 1999
- 2 Alleman R, Wamsley H. Complete Urinalysis. In: Elliott J, Grauer GF, Westropp JL, eds. BSAVA Manual of Canine and Feline Nephrology and Urology. 3rd ed. Gloucester: British Small Animal Veterinary Association; 2017: 60-83
- 3 Rizzi TE, Valenciano A, Cowell RL. et al. Atlas of Canine and Feline Urinalysis. 1st ed. New York: John Wiley & Sons, Inc; 2017
- 4 Wamsley HL. Examination of the Urinary Sediment. In: Cowell RL, Valenciano AC, eds. Cowell and Tylerʼs Diagnostic Cytology and Hematology of the Dog and Cat. 4th ed. St. Louis: Mosby; 2014: 402-430
- 5 Barlough JE, Osborne CA, Stevens JB. Canine and feline urinalysis: value of macroscopic and microscopic examinations. J Am Vet Med Assoc 1981; 178: 61-63
- 6 Arnold JE, Camus MS, Freeman KP. et al. ASVCP Guidelines: Principles of quality assurance and standards for veterinary clinical pathology (version 3.0): Developed by the American Society for Veterinary Clinical Pathology's (ASVCP) Quality Assurance and Laboratory Standards (QALS) Committee. Vet Clin Pathol 2019; 48: 542-618
- 7 Dolscheid-Pommerich RC, Klarmann-Schulz U, Conrad R. et al. Evaluation of the appropriate time period between sampling and analyzing for automated urinalysis. Biochem Med (Zagreb) 2016; 26: 82-89
- 8 Hindman R, Tronic B, Bartlett R. Effect of delay on culture of urine. J Clin Microbiol 1976; 4: 102-103
- 9 Padilla J, Osborne CA, Ward GE. Effects of storage time and temperature on quantitative culture of canine urine. J Am Vet Med Assoc 1981; 178: 1077-1081
- 10 Eisinger SW, Schwartz M, Dam L. et al. Evaluation of the BD Vacutainer Plus Urine C&S Preservative Tubes compared with nonpreservative urine samples stored at 4°C and room temperature. Am J Clin Pathol 2013; 140: 306-313
- 11 Albasan H, Lulich JP, Osborne CA. et al. Effects of storage time and temperature on pH, specific gravity, and crystal formation in urine samples from dogs and cats. J Am Vet Med Assoc 2003; 222: 176-179
- 12 Sturgess CP, Hesford A, Owen H. et al. An investigation into the effects of storage on the diagnosis of crystalluria in cats. J Feline Med Surg 2001; 3: 81-85
- 13 Aulakh HK, Aulakh KS, Ryan KA. et al. Investigation of the effects of storage with preservatives at room temperature or refrigeration without preservatives on urinalysis results for samples from healthy dogs. J Am Vet Med Assoc 2020; 257: 726-733
- 14 Seigner S, Bogedale K, Dorsch R. et al. Comparison of the Anvajo Vet Fluidlab 1 urine sediment analyzer to manual microscopy and Idexx SediVue analysis for analysis of urine samples from cats and dogs. J Vet Diagn Invest 2022; 34: 944-954
- 15 Kouri T, Malminiemi O, Penders J. et al. Limits of preservation of samples for urine strip tests and particle counting. Clin Chem Lab Med 2008; 46: 703-713
- 16 Kouri T, Vuotari L, Pohjavaara S. et al. Preservation of urine for flow cytometric and visual microscopic testing. Clin Chem 2002; 48: 900-905
- 17 Reppas G, Foster SF. Practical urinalysis in the cat: 1: urine macroscopic examination ‘tips and trapsʼ. J Feline Med Surg 2016; 18: 190-202
- 18 Gadeholt H. Quantitative estimation of urinary sediment, with special regard to sources of error. Br Med J 1964; 1: 1547-1549
- 19 Carlson DA, Statland BE. Automated urinalysis. Clin Lab Med 1988; 8: 449-461
- 20 Winkel P, Statland BE, Jorgensen K. Urine microscopy, an ill-defined method, examined by a multifactorial technique. Clin Chem 1974; 20: 436-439
- 21 Palsson R, Colona MR, Hoenig MP. et al. Assessment of interobserver reliability of nephrologist examination of urine sediment. JAMA Netw Open 2020; 3: e2013959
- 22 Wald R, Bell CM, Nisenbaum R. et al. Interobserver reliability of urine sediment interpretation. Clin J Am Soc Nephrol 2009; 4: 567-571
- 23 Vitiello T, Cerone A, Rossi G. et al. Reproducibility of urine sediment examination using different volumes of sample. In, Proc 25th ECVIM-CA Congress. Lisbon: ECVIM-CA Congress; 2015
- 24 Chase J, Hammond J, Bilbrough G. et al. Urine sediment examination: Potential impact of red and white blood cell counts using different sediment methods. Vet Clin Pathol 2018; 47: 608-616
- 25 Lamchiagdhase P, Preechaborisutkul K, Lomsomboon P. et al. Urine sediment examination: a comparison between the manual method and the iQ200 automated urine microscopy analyzer. Clin Chim Acta 2005; 358: 167-174
- 26 Chien TI, Kao JT, Liu HL. et al. Urine sediment examination: a comparison of automated urinalysis systems and manual microscopy. Clin Chim Acta 2007; 384: 28-34
- 27 Lee W, Ha JS, Ryoo NH. Comparison of the automated cobas u 701 Urine Microscopy and UF-1000i Flow Cytometry Systems and manual microscopy in the examination of urine sediments. J Clin Lab Anal 2016; 30: 663-671
- 28 Vasilatis DM, Cowgill LD, Farace G. et al. Comparison of IDEXX SediVue Dx® urine sediment analyzer to manual microscopy for detection of casts in canine urine. J Vet Intern Med 2021; 35: 1439-1447
- 29 Zaman Z, Fogazzi GB, Garigali G. et al. Urine sediment analysis: Analytical and diagnostic performance of sediMAX – a new automated microscopy image-based urine sediment analyser. Clin Chim Acta 2010; 411: 147-154
- 30 O'Neil E, Horney B, Burton S. et al. Comparison of wet-mount, Wright-Giemsa and Gram-stained urine sediment for predicting bacteriuria in dogs and cats. Can Vet J 2013; 54: 1061-1066
- 31 Way LI, Sullivan LA, Johnson V. et al. Comparison of routine urinalysis and urine Gram stain for detection of bacteriuria in dogs. J Vet Emerg Crit Care (San Antonio) 2013; 23: 23-28
- 32 Swenson CL, Boisvert AM, Kruger JM. et al. Evaluation of modified Wright-staining of urine sediment as a method for accurate detection of bacteriuria in dogs. J Am Vet Med Assoc 2004; 224: 1282-1289
- 33 Swenson CL, Boisvert AM, Gibbons-Burgener SN. et al. Evaluation of modified Wright-staining of dried urinary sediment as a method for accurate detection of bacteriuria in cats. Vet Clin Pathol 2011; 40: 256-264
- 34 Reppas G, Foster SF. Practical urinalysis in the cat: 2: urine microscopic examination 'tips and traps'. J Feline Med Surg 2016; 18: 373-385
- 35 Hernandez AM, Bilbrough GEA, DeNicola DB. et al. Comparison of the performance of the IDEXX SediVue Dx® with manual microscopy for the detection of cells and 2 crystal types in canine and feline urine. J Vet Intern Med 2019; 33: 167-177
- 36 IDEXX Laboratories. SediVue Dx* Urine Sediment Analyzer Operator’s Guide. Im Internet: https://www.idexx.com/files/sedivue-ops-guide-en.pdf; Stand: 01.10.2022
- 37 Roe CE, Carlson DA, Daigneault RW. et al. Evaluation of the Yellow IRIS. An automated method for urinalysis. Am J Clin Pathol 1986; 86: 661-665
- 38 Fenili D, Pirovano B. The automation of sediment urinalysis using a new urine flow cytometer (UF-100). Clin Chem Lab Med 1998; 36: 909-917
- 39 Bakan E, Ozturk N, Baygutalp NK. et al. Comparison of Cobas 6500 and Iris IQ200 fully-automated urine analyzers to manual urine microscopy. Biochem Med (Zagreb) 2016; 26: 365-375
- 40 Yüksel H, Kiliç E, Ekinci A. et al. Comparison of fully automated urine sediment analyzers H800-FUS100 and LabUMat-UriSed with manual microscopy. J Clin Lab Anal 2013; 27: 312-316
- 41 Neubert E, Weber K. Using the Idexx SediVue Dx to predict the need for urine bacteriologic culture in cats. J Vet Diagn Invest 2021; 33: 1202-1205
- 42 Linko S, Kouri TT, Toivonen E. et al. Analytical performance of the Iris iQ200 automated urine microscopy analyzer. Clin Chim Acta 2006; 372: 54-64
- 43 Previtali G, Ravasio R, Seghezzi M. et al. Performance evaluation of the new fully automated urine particle analyser UF-5000 compared to the reference method of the Fuchs-Rosenthal chamber. Clin Chim Acta 2017; 472: 123-130
- 44 Abaxis Inc. VETSCAN® SA Sediment Analyzer user's manual. Im Internet: https://www2.zoetisus.com/content/_assets/docs/Diagnostics/operator_s-manual-guides/VETSCAN-SA-User-Manual-ABX-00074.pdf; Stand: 01.10.2022
- 45 Bioway Biological Technology Co. BW-2000 VET Urine Sediment Analyzer. Im Internet: http://en.bioway.com.cn/index.php?a=shows&catid=60&id=26; Stand: 01.10.2022
- 46 Reine NJ, Langston CE. Urinalysis interpretation: how to squeeze out the maximum information from a small sample. Clin Tech Small Anim Pract 2005; 20: 2-10
- 47 Hartmann K. Rule-Outs für die Kleintiermedizin. 3. Aufl. Hannover: Schlütersche Verlagsgesellschaft mbH & Co. KG; 2021
- 48 Holan KM, Kruger JM, Gibbons SN. et al. Clinical evaluation of a leukocyte esterase test-strip for detection of feline pyuria. Vet Clin Pathol 1997; 26: 126-131
- 49 Vail DM, Allen TA, Weiser G. Applicability of leukocyte esterase test strip in detection of canine pyuria. J Am Vet Med Assoc 1986; 189: 1451-1453
- 50 Defontis M, Bauer N, Failing K. et al. Automated and visual analysis of commercial urinary dipsticks in dogs, cats and cattle. Res Vet Sci 2013; 94: 440-445
- 51 Bauer N, Rettig S, Moritz A. Evaluation the Clinitek status automated dipstick analysis device for semiquantitative testing of canine urine. Res Vet Sci 2008; 85: 467-472
- 52 Farris J, Camus MS, Krimer PM. Leukocyte esterase and nitrite urine reagent strip utility under altered assay conditions in dogs. J Am Anim Hosp Assoc 2022; 58: 240-248
- 53 Bartges J, Olin S. Urinary Tract Infections. In: Elliott J, Grauer GF, Westropp JL, eds. BSAVA Manual of Canine and Feline Nephrology and Urology. 3rd ed. Gloucester: British Small Animal Veterinary Association; 2017: 328-337
- 54 Aupperle-Lellbach H, Grassinger J, Hohloch C. et al. Diagnostische Aussagekraft der BRAF-Mutation V595E in Urinproben, Ausstrichen und Bioptaten beim kaninen Übergangszellkarzinom. Tierarztl Prax Ausg K Kleintiere Heimtiere 2018; 46: 289-295
- 55 Decker B, Parker HG, Dhawan D. et al. Homologous mutation to human BRAF V600E is common in naturally occurring canine bladder cancer – evidence for a relevant model system and urine-based diagnostic test. Mol Cancer Res 2015; 13: 993-1002
- 56 Mochizuki H, Kennedy K, Shapiro SG. et al. BRAF mutations in canine cancers. PLoS One 2015; 10: e0129534
- 57 Grassinger JM, Aupperle-Lellbach H, Erhard H. et al. Nachweis der BRAF-Mutation bei kaninen Prostataerkrankungen. Tierarztl Prax Ausg K Kleintiere Heimtiere 2019; 47: 313-320
- 58 Brandt LE, Bohn AA, Charles JB. et al. Localization of canine, feline, and mouse renal membrane proteins. Vet Pathol 2012; 49: 693-703
- 59 Raila J, Neumann U, Schweigert FJ. Immunochemical localization of megalin, retinol-binding protein and Tamm-Horsfall glycoprotein in the kidneys of dogs. Vet Res Commun 2003; 27: 125-135
- 60 Schweigert FJ, Raila J, Haebel S. Vitamin A excreted in the urine of canines is associated with a Tamm-Horsfall like protein. Vet Res 2002; 33: 299-311
- 61 Rimer D, Chen H, Bar-Nathan M. et al. Acute kidney injury in dogs: Etiology, clinical and clinicopathologic findings, prognostic markers, and outcome. J Vet Intern Med 2022; 36: 609-618
- 62 Vaden SL, Levine J, Breitschwerdt EB. A retrospective case-control of acute renal failure in 99 dogs. J Vet Intern Med 1997; 11: 58-64
- 63 Paz LN, Dias CS, Almeida DS. et al. Multidisciplinary approach in the diagnosis of acute leptospirosis in dogs naturally infected by Leptospira interrogans serogroup Icterohaemorrhagiae: A prospective study. Comp Immunol Microbiol Infect Dis 2021; 77: 101664
- 64 Davis J, Rossi G, Cianciolo RE. et al. Early diagnosis of acute kidney injury subsequent to severe hypotension and fluid resuscitation in anaesthetized dogs. Vet Anaesth Analg 2022; 49: 344-353
- 65 Gross C, Cianciolo RE, Lees GE. et al. Proliferative, necrotizing and crescentic immune complex-mediated glomerulonephritis in a cat. JFMS Open Rep 2015; 1: 2055116915603995
- 66 Shimada A, Nakai T, Morita T. et al. Systemic rhabdomyonecrosis and acute tubular necrosis in a dog associated with wasp stings. Vet Rec 2005; 156: 320-322
- 67 Chen H, Aroch I, Segev G. Acute kidney injury secondary to traumatic rhabdomyolysis in a dog. J Vet Emerg Crit Care (San Antonio) 2018; 28: 585-590
- 68 Fairley KF, Birch DF. Hematuria: a simple method for identifying glomerular bleeding. Kidney Int 1982; 21: 105-108
- 69 Neumann S, Fechner K, Czerny CP. Stability of canine urine samples under different storage conditions. Can J Vet Res 2020; 84: 259-264
- 70 Bell ET, Lulich JP. Marked struvite crystalluria and its association with lower urinary tract signs in a cat with feline idiopathic cystitis. Aust Vet J 2015; 93: 332-335
- 71 Gunn-Moore D. Feline lower urinary tract disease. J Feline Med Surg 2003; 5: 133-138
- 72 Uttamamul N, Jitpean S, Lulitanond A. et al. Risk factors for canine magnesium ammonium phosphate urolithiasis associated with bacterial infection. J Vet Sci 2022; 23: e6
- 73 Osborne CA, Lulich JP, Kruger JM. et al. Feline urethral plugs. Etiology and pathophysiology. Vet Clin North Am Small Anim Pract 1996; 26: 233-253
- 74 Jacobsen D, Akesson I, Shefter E. Urinary calcium oxalate monohydrate crystals in ethylene glycol poisoning. Scand J Clin Lab Invest 1982; 42: 231-234
- 75 Connally HE, Thrall MA, Hamar DW. Safety and efficacy of high-dose fomepizole compared with ethanol as therapy for ethylene glycol intoxication in cats. J Vet Emerg Crit Care (San Antonio) 2010; 20: 191-206
- 76 Kopecny L, Palm CA, Segev G. et al. Urolithiasis in dogs: evaluation of trends in urolith composition and risk factors (2006-2018). J Vet Intern Med 2021; 35: 1406-1415
- 77 Breu D, Stieger N, Muller E. Occurrence of uroliths – age-, breed-, and gender-specific differences in dogs from Germany. Tierarztl Prax Ausg K Kleintiere Heimtiere 2021; 49: 6-12
- 78 Hesse A, Hoffmann J, Orzekowsky H. et al. Canine cystine urolithiasis: a review of 1760 submissions over 35 years (1979-2013). Can Vet J 2016; 57: 277-281
- 79 Kovarikova S, Marsalek P, Vrbova K. Cystinuria in dogs and cats: What do we know after almost 200 years. Animals (Basel) 2021; 11
- 80 Brons AK, Henthorn PS, Raj K. et al. SLC3A1 and SLC7A9 mutations in autosomal recessive or dominant canine cystinuria: a new classification system. J Vet Intern Med 2013; 27: 1400-1408
- 81 Kucera J, Bulkova T, Rychla R. et al. Bilateral xanthine nephrolithiasis in a dog. J Small Anim Pract 1997; 38: 302-305
- 82 Furman E, Hooijberg EH, Leidinger E. et al. Hereditary xanthinuria and urolithiasis in a domestic shorthair cat. Comp Clin Path 2015; 24: 1325-1329
- 83 Tate NM, Minor KM, Lulich JP. et al. Multiple variants in XDH and MOCOS underlie xanthine urolithiasis in dogs. Mol Genet Metab Rep 2021; 29: 100792
- 84 Gow AG, Fairbanks LD, Simpson JW. et al. Xanthine urolithiasis in a Cavalier King Charles spaniel. Vet Rec 2011; 169: 209
- 85 van Zuilen CD, Nickel RF, van Dijk TH. et al. Xanthinuria in a family of Cavalier King Charles spaniels. Vet Q 1997; 19: 172-174
- 86 Tsuchida S, Kagi A, Koyama H. et al. Xanthine urolithiasis in a cat: a case report and evaluation of a candidate gene for xanthine dehydrogenase. J Feline Med Surg 2007; 9: 503-508
- 87 Kopecny L, Palm CA, Segev G. et al. Urolithiasis in cats: evaluation of trends in urolith composition and risk factors (2005-2018). J Vet Intern Med 2021; 35: 1397-1405
- 88 University of Minnesota. Minnesota Urolith Center. Treatment recommendations. Im Internet: https://vetmed.umn.edu/centers-programs/minnesota-urolith-center/urolith-analysis/treatment-recommendations; Stand: 15.11.2022
- 89 Harnsteinanalysezentrum Bonn. Animal Stone Letter. Im Internet: https://www.harnsteinanalysezentrum-bonn.de/files/opensauce/pdf/09-animal-stone-letter.pdf; Stand: 12.02.2023
- 90 Laboklin. Urate: Ammonium- und amorphe Urat-Kristallurie. Im Internet: https://laboklin.com/ch/vetinfo/bildgalerie/harnkristalle-bei-haustieren/urate-ammonium-und-amorphe-urat-kristallurie/; Stand: 12.02.2023
- 91 Mayer-Roenne B, Goldstein RE, Erb HN. Urinary tract infections in cats with hyperthyroidism, diabetes mellitus and chronic kidney disease. J Feline Med Surg 2007; 9: 124-132
- 92 White JD, Stevenson M, Malik R. et al. Urinary tract infections in cats with chronic kidney disease. J Feline Med Surg 2013; 15: 459-465
- 93 Coffey EL, Little K, Seelig DM. et al. Comparison of immediate versus delayed streak plate inoculation on urine bacterial culture and susceptibility testing in dogs and cats. J Vet Intern Med 2020; 34: 783-789
- 94 Forrester SD, Troy GC, Dalton MN. et al. Retrospective evaluation of urinary tract infection in 42 dogs with hyperadrenocorticism or diabetes mellitus or both. J Vet Intern Med 1999; 13: 557-560
- 95 Harrer J, Dorsch R. Bakterielle Harnwegsinfektion und subklinische Bakteriurie des Hundes: eine aktuelle Übersicht. Tierarztl Prax Ausg K Kleintiere Heimtiere 2020; 48: 270-284
- 96 McGuire NC, Schulman R, Ridgway MD. et al. Detection of occult urinary tract infections in dogs with diabetes mellitus. J Am Anim Hosp Assoc 2002; 38: 541-544
- 97 Wan SY, Hartmann FA, Jooss MK. et al. Prevalence and clinical outcome of subclinical bacteriuria in female dogs. J Am Vet Med Assoc 2014; 245: 106-112
- 98 Carter JM, Klausner JS, Osborne CA. et al. Comparison of collection techniques for quantitative urine culture in dogs. J Am Vet Med Assoc 1978; 173: 296-298
- 99 Comer KM, Ling GV. Results of urinalysis and bacterial culture of canine urine obtained by antepubic cystocentesis, catheterization, and the midstream voided methods. J Am Vet Med Assoc 1981; 179: 891-895
- 100 Dallman MJ, Dew TL, Tobias L. et al. Disseminated aspergillosis in a dog with diskospondylitis and neurologic deficits. J Am Vet Med Assoc 1992; 200: 511-513
- 101 Pressler BM, Vaden SL, Lane IF. et al. Candida spp. urinary tract infections in 13 dogs and seven cats: predisposing factors, treatment, and outcome. J Am Anim Hosp Assoc 2003; 39: 263-270
- 102 Elad D. Disseminated canine mold infections. Vet J 2019; 243: 82-90
- 103 Stenner VJ, Mackay B, King T. et al. Protothecosis in 17 Australian dogs and a review of the canine literature. Med Mycol 2007; 45: 249-266
- 104 Pressler BM, Gookin JL, Sykes JE. et al. Urinary tract manifestations of protothecosis in dogs. J Vet Intern Med 2005; 19: 115-119
- 105 Mariacher A, Millanta F, Guidi G. et al. Urinary capillariosis in six dogs from Italy. Open Vet J 2016; 6: 84-88
- 106 Basso W, Spanhauer Z, Arnold S. et al. Capillaria plica (syn. Pearsonema plica) infection in a dog with chronic pollakiuria: challenges in the diagnosis and treatment. Parasitol Int 2014; 63: 140-142
- 107 Greer T, Amaro AA, Wilson D. et al. Giant Red Kidney Worm (Dioctophyma renale) screening and treatment protocol and aberrant worm migration in dogs from Ontario and Manitoba, Canada. J Parasitol 2021; 107: 358-363
- 108 Ferreira VL, Medeiros FP, July JR. et al. Dioctophyma renale in a dog: clinical diagnosis and surgical treatment. Vet Parasitol 2010; 168: 151-155
- 109 Mesquita LR, Rahal SC, Faria LG. et al. Pre- and post-operative evaluations of eight dogs following right nephrectomy due to Dioctophyma renale. Vet Q 2014; 34: 167-171
- 110 Nakagawa TL, Bracarense AP, dos Reis AC. et al. Giant kidney worm (Dioctophyma renale) infections in dogs from Northern Parana, Brazil. Vet Parasitol 2007; 145: 366-370
- 111 Giorello AN, Kennedy MW, Butti MJ. et al. Identification and characterization of the major pseudocoelomic proteins of the giant kidney worm, Dioctophyme renale. Parasit Vectors 2017; 10: 446
- 112 Angelou A, Tsakou K, Mpranditsas K. et al. Giant Kidney Worm: novel report of Dioctophyma renale in the kidney of a dog in Greece. Helminthologia 2020; 57: 43-48
- 113 Brunner CB, Scheid HV, Venancio FDR. et al. Dioctophyme renale in wandering dogs in Pelotas, South of Brasil. Rev Bras Parasitol Vet 2022; 31: e016821
- 114 Rappeti JC, Mascarenhas CS, Perera SC. et al. Dioctophyme renale (Nematoda: Enoplida) in domestic dogs and cats in the extreme south of Brazil. Rev Bras Parasitol Vet 2017; 26: 119-121
- 115 Monobe MM, da Silva RC, Araujo Junior JP. et al. Microfilaruria by Dirofilaria immitis in a dog: a rare clinical pathological finding. J Parasit Dis 2017; 41: 805-808
- 116 Kaewthamasorn M, Assarasakorn S, Niwetpathomwat A. Microfilaruria caused by canine dirofilariasis (Dirofilaria immitis): an unusual clinical presence. Comp Clin Pathol 2008; 17: 61-65