physiopraxis 2023; 21(09): 32-37
DOI: 10.1055/a-2122-5548
Therapie

Bewusst eingesetzt – Motorisches Lernen mit dem Therapieroboter

Martin Huber
,
Markus Wirz

Die Robotik eröffnet neue Möglichkeiten in der motorischen Neurorehabilitation. Exoskelette unterstützen Patient*innen nach Schlaganfall beim Gehen, andere Endeffektoren trainieren den betroffenen Arm spielerisch mit Exergames. Basis für die robotergestützte Therapie ist das Motorische Lernen. Der Transfer in den Alltag zeigt allerdings noch diverse Schwächen.



Publication History

Article published online:
12 September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literaturverzeichnis

  • 1 Robert Koch-Institut. Wie steht es um unsere Gesundheit? Gesundheit in Deutschland 2015. Im Internet (Stand: 07.07.2023): DOI: 10.17886/RKIPUBL-2015-003-2
  • 2 Kleynen M, Beurskens A, Olijve H. et al Application of motor learning in neurorehabilitation: a framework for health-care professionals. Physiother Theory Pract 2018; 36: 1-20
  • 3 Winstein C, Lewthwaite R, Blanton SR. et al Infusing Motor Learning Research into Neurorehabilitation Practice: A Historical Perspective With Case Exemplar From the Accelerated Skill Acquisition Program. Journal of Neurologic Physical Therapy 2014; 38: 190-200
  • 4 Majsak M. Concepts and Principles of Neurological Rehabilitation. In: Fell D. Lifespan Neurorehabilitation: A Patient-Centered Approach from Examination to Intervention and Outcomes. F.A. Davis 2018
  • 5 Huber M, Janssen C, Erzer Lüscher F. et al Motorisches Lernen in der Neuroreha. 1. Auflage. Stuttgart: Thieme; 2022
  • 6 Gassert R, Dietz V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J Neuroeng Rehabil 2018; 15: 46
  • 7 Reinkensmeyer DJ, Marchal-Crespo L, Dietz V. Neurorehabilitation Technology. 3. Aufl. Heidelberg, Berlin: Springer; 2022
  • 8 Morone G, Paolucci S, Cherubini A. et al Robot-assisted gait training for stroke patients: current state of the art and perspectives of robotics. Neuropsychiatr Dis Treat 2017; 13: 1303-1311
  • 9 Nadeau SE. A paradigm shift in neurorehabilitation. The Lancet Neurology 2002; 01: 126-130
  • 10 Taub E, Uswatte G. Constraint-induced movement therapy: bridging from the primate laboratory to the stroke rehabilitation laboratory. Journal of Rehabilitation Medicine 2003; 35: 34-40
  • 11 Dietz V. Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 1992; 72: 33-69
  • 12 Marder E, Bucher D. Central pattern generators and the control of rhythmic movements. Current Biology 2001; 11: R986-R996
  • 13 van Middendorp JJ, Goss B, Urquhart S. et al Diagnosis and Prognosis of Traumatic Spinal Cord Injury. Global Spine Journal 2011; 01: 001-007
  • 14 Guadagnoli MA, Lee TD. Challenge point: a framework for conceptualizing the effects of various practice conditions in motor learning. J Mot Behav 2004; 36: 212-224
  • 15 Thimabut N, Yotnuengnit P, Charoenlimprasert J. et al Effects of the Robot-Assisted Gait Training Device Plus Physiotherapy in Improving Ambulatory Functions in Patients With Subacute Stroke With Hemiplegia: An Assessor-Blinded, Randomized Controlled Trial. Archives of Physical Medicine and Rehabilitation 2022; 103: 843-850
  • 16 Morone G, Cocchi I, Paolucci S. et al Robot-assisted therapy for arm recovery for stroke patients: state of the art and clinical implication. Expert Rev Med Devices 2020; 17: 223-233
  • 17 Paolucci T, Agostini F, Mangone M. et al Robotic rehabilitation for end-effector device and botulinum toxin in upper limb rehabilitation in chronic post-stroke patients: an integrated rehabilitative approach. Neurol Sci 2021; 42: 5219-5229
  • 18 International Industry Society in Advanced Rehabilitation Technology (iisart). Principles of New Technologies 2023. Im Internet (Stand: 23.03.2023) https://iisart.org/education/
  • 19 Brown DA, Lee TD. Designing Robots That Challenge to Optimize Motor Learning | SpringerLink. In: Neurorehabilitation Technology. Springer International Publishing 2016
  • 20 Krakauer JW, Carmichael ST. Broken Movement: The Neurobiology of Motor Recovery after Stroke. Cambridge, MA: MIT Press; 2022
  • 21 Mehrholz J, Pohl M, Platz T. et al Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Syst Rev 2018; 09: CD006876
  • 22 Mehrholz J, Pollock A, Pohl M. et al Systematic review with network meta-analysis of randomized controlled trials of robotic-assisted arm training for improving activities of daily living and upper limb function after stroke. J Neuroeng Rehabil 2020; 17: 83
  • 23 Dietz V, Muller R, Colombo G. Locomotor activity in spinal man: significance of afferent input from joint and load receptors. Brain 2002; 125: 2626-2634
  • 24 Wirz M, Bansi J, Capecci M. et al Robotic Gait Training in Specific Neurological Conditions: Rationale and Application. In: Reinkensmeyer DJ, Marchal-Crespo L, Dietz V, Hrsg. Neurorehabilitation Technology. Cham: Springer International Publishing; 2022: 145-188
  • 25 Colombo G, Joerg M, Schreier R. et al Treadmill training of paraplegic patients using a robotic orthosis. Journal of rehabilitation research and development 2000; 37: 693-700
  • 26 Plaza A, Hernandez M, Puyuelo G. et al Lower-Limb Medical and Rehabilitation Exoskeletons: A Review of the Current Designs. IEEE Rev Biomed Eng 2023; 16: 278-291
  • 27 Zbogar D, Eng JJ, Miller WC. et al Movement repetitions in physical and occupational therapy during spinal cord injury rehabilitation. Spinal Cord 2017; 55: 172-179
  • 28 Walker MF, Hoffmann TC, Brady MC. et al Improving the development, monitoring and reporting of stroke rehabilitation research: Consensus-based core recommendations from the Stroke Recovery and Rehabilitation Roundtable. International Journal of Stroke 2017; 12: 472-479
  • 29 Calafiore D, Negrini F, Tottoli N. et al Efficacy of robotic exoskeleton for gait rehabilitation in patients with subacute stroke : a systematic review. Eur J Phys Rehabil Med 2022: 58
  • 30 Yamamoto R, Sasaki S, Kuwahara W. et al Effect of exoskeleton-assisted Body Weight-Supported Treadmill Training on gait function for patients with chronic stroke: a scoping review. J NeuroEngineering Rehabil 2022; 19: 143
  • 31 Mehrholz J, Thomas S, Kugler J. et al Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 2020; 10: CD006185
  • 32 Luft A, Bastian AJ, Dietz V. Learning in the damaged brain/spinal cord : neuroplasticity. In: Neurorehabilitation Technology. Heidelberg: Springer; 2022
  • 33 Schweighofer N, Wang C Mottet D. et al Dissociating motor learning from recovery in exoskeleton training post-stroke. J Neuroeng Rehabil 2018; 15: 89
  • 34 Hornby TG, Moore JL, Lovell L. et al Influence of skill and exercise training parameters on locomotor recovery during stroke rehabilitation. Curr Opin Neurol 2016; 29: 677-683
  • 35 Glaister BC, Bernatz GC, Klute GK. et al Video task analysis of turning during activities of daily living. Gait & Posture 2007; 25: 289-294
  • 36 Lo AC, Guarino PD, Richards LG. et al Robot-assisted therapy for long-term upper-limb impairment after stroke. N Engl J Med 2010; 362: 1772-1783