Laryngorhinootologie 2024; 103(04): 279-288
DOI: 10.1055/a-2123-4315
Originalarbeit

Einfluss von Ober- und Untertönen auf die Melodieerkennung mit einem Cochlea-Implantat bei SSD

Influence of overtones and undertones on melody recognition with a cochlear implant with SSD
1   Universitätsklinik für Hals-Nasen-Ohrenheilkunde und Kopf- und Halschirurgie der Ruhr-Universität Bochum, Sankt Elisabeth Hospital, Ruhr-Universität Bochum, Bochum, Deutschland (Ringgold ID: RIN9142)
,
Johannes Gauer
2   Fakultät für Elektrotechnik und Informationstechnik, Institut für Kommunikationsakustik, Ruhr-Universität Bochum, Bochum, Deutschland (Ringgold ID: RIN9142)
,
Rainer Martin
2   Fakultät für Elektrotechnik und Informationstechnik, Institut für Kommunikationsakustik, Ruhr-Universität Bochum, Bochum, Deutschland (Ringgold ID: RIN9142)
,
Christiane Völter
1   Universitätsklinik für Hals-Nasen-Ohrenheilkunde und Kopf- und Halschirurgie der Ruhr-Universität Bochum, Sankt Elisabeth Hospital, Ruhr-Universität Bochum, Bochum, Deutschland (Ringgold ID: RIN9142)
› Author Affiliations

Zusammenfassung

Viele Träger*innen eines Cochlea-Implantats (CI) können Tonhöhen und Melodien schlecht erkennen, da die Tonhöhenübertragung unscharf und verschoben ist. Diese Studie untersucht, ob postlingual ertaubte erwachsene CI-Träger*innen Melodien besser erkennen, wenn Obertöne entfernt oder Untertöne hinzugefügt werden.

Eingeschlossen wurden 15 einseitig postlingual ertaubte CI-Träger*innen (Single Sided Deafness, SSD) im Alter von 22–73 Jahren (MW 52, SD 11,6) mit einer CI-Hörerfahrung zwischen 3 und 75 Monaten (MW 33, SD 21,0) mit verschiedenen MED-EL-Modellen. Drei kurze Klaviermelodien wurden ihnen zunächst auf dem normalhörenden Ohr und dann in veränderten Ober- oder Untertonvarianten und der Originalvariante auf dem CI-Ohr präsentiert. Die Varianten sollten als eine der 3 Originalmelodien identifiziert werden. Zusätzlich wurden die musikalischen Fähigkeiten und Erfahrungen durch den Münchner Musikfragebogen und den MiniPROMS-Musiktest erfasst.

Die Melodieerkennung gelang den CI-Träger*innen am besten in der Grundfrequenzvariante. Die Obertonvariante mit dem dritten Oberton ergab eine gleichwertige Melodieerkennung wie die Originalvariante aus allen Obertönen (p=1). Indes wurde die Untertonvariante mit dem ersten Unterton signifikant schlechter als die Grundfrequenzvariante erkannt (p=0,032). Ferner zeigte sich keine Korrelation zwischen der Musikerfahrung oder den musikalischen Fähigkeiten und der Anzahl an erkannten Melodien (p>0,1).

Da die Obertonreduktion die Melodieerkennung nicht verschlechtert und in anderen Arbeiten den Musikgenuss sogar verbesserte, sollte die Obertonreduktion in künftigen Musikverarbeitungsprogrammen für das CI berücksichtigt werden. Dies könnte zusätzlich den Energieverbrauch des CI reduzieren.

Abstract

Many cochlear implant (CI) users have difficulties recognising pitches and melodies because pitch transmission is blurred and shifted. This study investigates whether postlingually deafened adult CI users recognize melodies better when overtones are removed or undertones are added.

Fifteen unilaterally postlingually deafened CI users (single sided deafness = SSD) were included aged 22 to 73 years (MW 52, SD 11.6) with CI hearing experience between 3 and 75 months (MW 33, SD 21.0) with varying MED-EL devices. Three short piano melodies were presented to them firstly to the normal-hearing ear and then in modified overtone or undertone variants and the original variant to the CI ear. These variants should be identified as one of the three original melodies. In addition, musical experience and ability were assessed by the Munich Music Questionnaire and the MiniPROMS music tests.

The CI users showed the best melody recognition in the fundamental frequency variant. The overtone variant with the third overtone was as good as the original variant with all overtones with regard to melody recognition (p=1). However, the undertone variant with the first undertone was recognised significantly worse than the fundamental version (p=0.032). Furthermore, there was no correlation between musical experience or musical ability and the number of melodies recognised (p>0.1).

Since a reduction of overtones did not worsen the melody recognition, overtone reduction should be considered in future music processing programs for the CI. This could reduce the energy consumption of the CI.



Publication History

Received: 06 September 2022

Accepted after revision: 26 June 2023

Article published online:
25 September 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Lenarz T. Cochlear Implant – State of the Art. Laryngorhinootologie 2017; 96: S123-S151
  • 2 Limb CJ, Roy AT. Technological, biological, and acoustical constraints to music perception in cochlear implant users. Hear Res 2014; 308: 13-26
  • 3 Riley PE, Ruhl DS, Camacho M. et al. Music Appreciation after Cochlear Implantation in Adult Patients: A Systematic Review. Otolaryngol Head Neck Surg 2018; 158: 1002-1010
  • 4 Gfeller K, Christ A, Knutson J. et al. Musical Backgrounds, Listening Habits, and Aesthetic Enjoyment of Adult Cochlear Implant Recipients. J Am Acad Audiol 2000; 11: 390-406
  • 5 Bruns L, Mürbe D, Hahne A. Understanding music with cochlear implants. Sci Rep 2016; 6: 32026
  • 6 Looi V, Gfeller K, Driscoll V. Music Appreciation and Training for Cochlear Implant Recipients: A Review. Semin Hear 2012; 33: 307-334
  • 7 Hahne A, Mainka A, Leuner A. et al. Adult Cochlear Implant Users Are Able to Discriminate Basic Tonal Features in Musical Patterns: Evidence From Event-related Potentials. Otol Neurotol 2016; 37: e360-8
  • 8 McDermott HJ. Music Perception with Cochlea Implants: A Review. Trends Amplif 2004; 49-82
  • 9 Wilson BS, Dorman MF. Cochlear implants: a remarkable past and a brilliant future. Hear Res 2008; 242: 3-21
  • 10 Jiam NT, Pearl MS, Carver C. et al. Flat-Panel CT Imaging for Individualized Pitch Mapping in Cochlear Implant Users. Otology & Neurotology 2016; 37: 672-679
  • 11 Rader T, Döge J, Adel Y. et al. Place dependent stimulation rates improve pitch perception in cochlear implantees with single-sided deafness. Hear Res 2016; 339: 94-103
  • 12 Jiam NT, Caldwell MT, Limb CJ. What Does Music Sound Like for a Cochlear Implant User?. Otol Neurotol 2017; 38: e240-e247
  • 13 Kießling J, Kollmeier B, Baumann U. Versorgung mit Hörgeräten und Hörimplantaten // 3.1 Cochlea-Implantate. 173 Abbildungen. 3. Aufl. Stuttgart, New York: Georg Thieme Verlag; 2018
  • 14 Smith ZM, Delgutte B, Oxenham AJ. et al. Chimaeric sounds reveal dichotomies in auditory perception. Nature 2002; 416: 87-90
  • 15 Zierhofer C, Schatzer R. A Fine Structure Stimulation Strategy and Related Concepts. In: Cochlear Implant Research Updates. Rijeka: InTech; 2012: 91-114
  • 16 Looi V, Winter P, Anderson I. et al. A music quality rating test battery for cochlear implant users to compare the FSP and HDCIS strategies for music appreciation. Int J Audiol 2011; 50: 503-518
  • 17 Arnoldner C, Riss D, Brunner M. et al. Speech and music perception with the new fine structure speech coding strategy: preliminary results. Acta Otolaryngol 2007; 127: 1298-1303
  • 18 Donnelly PJ, Guo BZ, Limb CJ. Perceptual fusion of polyphonic pitch in cochlear implant users. J Acoust Soc Am 2009; 126: EL128-33
  • 19 Looi V, McDermott H, McKay C. et al. Music Perception of Cochlear Implant Users Compared with that of Hearing Aid Users. Ear&Hearing 2008; 29: 421-434
  • 20 Galvin JJ, Fu Q-J, Nogaki G. Melodic Contour Identification by Cochlear Implant Listeners // Melodic contour identification by cochlear implant listeners. Ear&Hearing 2007; 28: 302-319
  • 21 Nogueira W, Nagathil A, Martin R. Making Music More Accessible for Cochlear Implant Listeners: Recent Developments. IEEE Signal Process. Mag 2019; 36: 115-127
  • 22 Kohlberg GD, Mancuso DM, Chari DA. et al. Music Engineering as a Novel Strategy for Enhancing Music Enjoyment in the Cochlear Implant Recipient. Behav Neurol 2015; 2015: 829680
  • 23 Looi V, McDermott H, McKay C. et al. Comparisons of Quality Ratings for Music by Cochlear Implant and Hearing Aid Users. Ear&Hearing 2007; 28: 59S-61S
  • 24 Gauer J, Nagathil A, Martin R. et al. Interactive Evaluation of a Music Preprocessing Scheme for Cochlear Implants Based on Spectral Complexity Reduction. Front Neurosci 2019; 13: 1206
  • 25 Gfeller K, Jiang D, Oleson J. et al. The Effects of Musical and Linguistic Components in Recognition of Real-World Musical Excerpts by Cochlear Implant Recipients and Normal-Hearing Adults // The effects of musical and linguistic components in recognition of real-world musical excerpts by cochlear implant recipients and normal-hearing adults. J Music Ther 2012; 49: 68-101
  • 26 Buyens W, van Dijk B, Moonen M. et al. Music mixing preferences of cochlear implant recipients: a pilot study. Int J Audiol 2014; 53: 294-301
  • 27 Gajęcki T, Nogueira W. Deep learning models to remix music for cochlear implant users. J Acoust Soc Am 2018; 143: 3602
  • 28 Pons J, Janer J, Rode T. et al. Remixing music using source separation algorithms to improve the musical experience of cochlear implant users. J Acoust Soc Am 2016; 140: 4338
  • 29 Galvin JJ, Fu Q-J, Shannon RV. Melodic contour identification and music perception by cochlear implant users. Ann N Y Acad Sci 2009; 1169: 518-533
  • 30 Fuller CD, Galvin JJ, Maat B. et al. Comparison of Two Music Training Approaches on Music and Speech Perception in Cochlear Implant Users. Trends Hear 2018; 22: 2331216518765379
  • 31 Omran S, Lai W, Büchler M. et al. Semitone frequency mapping to improve music representation for nucleus cochlear implants: EURASIP Journal on Audio, Speech, and Music Processing. 2011
  • 32 Müller J, Brill S, Hagen R. et al. Clinical trial results with the MED-EL fine structure processing coding strategy in experienced cochlear implant users. ORL J Otorhinolaryngol Relat Spec 2012; 74: 185-198
  • 33 Todd AE, Mertens G, van de Heyning P. et al. Encoding a Melody Using Only Temporal Information for Cochlear-Implant and Normal-Hearing Listeners. Trends Hear 2017; 21: 2331216517739745
  • 34 Kasturi K, Loizou PC. Effect of filter spacing on melody recognition: acoustic and electric hearing. J Acoust Soc Am 2007; 122: EL29-34
  • 35 Innes-Brown H, Au A, Stevens C. et al. New music for the Bionic Ear An assessment of the enjoyment of six new works. ESCOM JOint Conference. 2012
  • 36 Nagathil A, Weihs C, Martin R. Spectral Complexity Reduction of Music Signals for Mitigating Effects of Cochlear Hearing Loss. IEEE/ACM Trans. Audio Speech Lang. Process 2016; 24: 445-458
  • 37 Nagathil A, Weihs C, Neumann K. et al. Spectral complexity reduction of music signals based on frequency-domain reduced-rank approximations: An evaluation with cochlear implant listeners. J Acoust Soc Am 2017; 142: 1219
  • 38 Gauer J, Krymova E, Belomestny D. et al. Spectral Complexity Reduction of Music Signals for Cochlear Implant Users based on Subspace Tracking. Piscataway, NJ: IEEE; 2019
  • 39 Nemer JS, Kohlberg GD, Mancuso DM. et al. Reduction of the Harmonic Series Influences Musical Enjoyment With Cochlear Implants. Otol Neurotol 2017; 38: 31-37
  • 40 Haumann S, Mühler R, Ziese M. et al. Diskrimination musikalischer Tonhöhen bei Patienten mit Kochleaimplantat. HNO 2007; 55: 613-619
  • 41 Penninger RT, Kludt E, Limb CJ. et al. Perception of Polyphony With Cochlear Implants for 2 and 3 Simultaneous Pitches. Otology & Neurotology 2014; 35: 431-436
  • 42 Singh S, Kong YY, Zeng FG. Cochlear implant melody recognition as a function of melody frequency range, harmonicity, and number of electrodes. Ear Hear 2009; 30: 160-168
  • 43 Olusanya BO, Davis AC, Hoffman HJ. Hearing loss grades and the International classification of functioning, disability and health. Bull World Health Organ 2019; 97: 725-728
  • 44 Brown JC. Calculation of a constant Q spectral transform. J Acoust Soc Am 1991; 89 (01) 425-434
  • 45 Brockmeier SJ. Münchner Musikfragebogen. MED-EL.
  • 46 Zentner M, Strauss H. Assessing musical ability quickly and objectively: development and validation of the Short-PROMS and the Mini-PROMS. Ann N Y Acad Sci 2017; 1400: 33-45
  • 47 Nogueira W, Büchner A, Lenarz T. et al. A psychoacoustic NofM-type speech coding strategy for cochlear implants. EURASIP J. Adv. Signal Process 2005; 3044-3059
  • 48 Büchner A, Beynon A, Szyfter W. et al. Clinical evaluation of cochlear implant sound coding taking into account conjectural masking functions, MP3000. Cochlear Implants International 2011; 12 (04) 194-204
  • 49 Wouters J, McDermott HJ, Francart T. Sound Coding in Cochlear Implants: From electric pulses to hearing. IEEE Signal Process. Mag 2015; 32: 67-80
  • 50 Galvin JJ, Fu QJ. Effect of bandpass filtering on melodic contour identification by cochlear implant users. J Acoust Soc Am 2011; 129: EL39-44
  • 51 Kraus N, Skoe E, Parbery-Clark A. et al. Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann N Y Acad Sci 2009; 1169: 543-557
  • 52 Law LNC, Zentner M. Assessing musical abilities objectively: construction and validation of the profile of music perception skills. PLoS ONE 2012; 7: e52508