Synthesis 2024; 56(01): 16-28
DOI: 10.1055/a-2124-3823
short review

Decoration on Cubane with an Awareness of Chirality: Development of Substituted Cubane Syntheses

Hiyori Takebe
,
The authors were supported for their works, shown in this review, by JSPS KAKENHI Grants 23H02605, 21H05233, JST-Project JPMJMS522362 (SM), and JSPS DC1 research fellowship 23KJ1339 (HT).


Abstract

Nearly 60 years have passed since Professor Eaton’s practical synthesis of cubane, and research using it as a unique molecular scaffold has since gained momentum. Since the early synthesis of polynitrocubane, it has been shown that up to eight substituents can be covalently assembled into a confined space. The arrangement of substituents on cubane has paved the way for the creation of unique asymmetric molecules. To put it another way, chirality is manifested by selectively introducing three or more diverse types of substituents at specific sites. Recently, there has also been a report on the synthesis of perfluorocubane, a molecule with intriguing electronic properties.

1 Introduction

2 General Information

3 Functionalization of Cubane

4 Preparation of Polysubstituted Cubanes

5 Conclusion



Publication History

Received: 26 May 2023

Accepted after revision: 06 July 2023

Accepted Manuscript online:
06 July 2023

Article published online:
31 August 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Eaton PE, Cole TW. Jr. J. Am. Chem. Soc. 1964; 86: 962
    • 1b Eaton PE, Cole TW. Jr. J. Am. Chem. Soc. 1964; 86: 3157
    • 1c Bliese M, Tsanaktsidis J. Aust. J. Chem. 1997; 50: 189
    • 2a Eaton PE. Angew. Chem., Int. Ed. Engl. 1992; 31: 1421
    • 2b Griffin GW, Marchand AP. Chem. Rev. 1989; 89: 997
    • 2c Biegasiewicz KF, Griffiths JR, Savage GP, Tsanaktsidis J, Priefer R. Chem. Rev. 2015; 115: 6719
    • 2d Grover N, Senge MO. Synthesis 2020; 52: 3295
    • 3a Chalmers BA, Xing H, Houston S, Clark C, Ghassabian S, Kuo A, Cao B, Reitsma A, Murray C.-EP, Stok JE, Boyle GM, Pierce CJ, Littler SW, Winkler DA, Bernhardt PV, Pasay C, De Voss JJ, McCarthy J, Parsons PG, Walter GH, Smith MT, Cooper HM, Nilsson SK, Tsanaktsidis J, Savage GP, Williams CM. Angew. Chem. Int. Ed. 2016; 55: 3580
    • 3b Houston SD, Fahrenhorst-Jones T, Xing H, Chalmers BA, Sykes ML, Stok JE, Soto CF, Burns JM, Bernhardt PV, De Voss JJ, Boyle GM, Smith MT, Tsanaktsidis J, Savage GP, Avery VM, Williams CM. Org. Biomol. Chem. 2019; 17: 6790
    • 3c Wiesenfeldt MP, Rossi-Ashton JA, Perry IB, Diesel J, Garry OL, Bartels F, Coote SC, Ma X, Yeung CS, Bennett DJ, MacMillan DW. C. Nature 2023; 618: 513
    • 4a de Meijere A, Redlich S, Frank D, Magull J, Hofmeister A, Menzel H, Konig B, Svoboda J. Angew. Chem. Int. Ed. 2007; 46: 4574
    • 4b Sugiyama M, Akiyama M, Yonezawa Y, Komaguchi K, Higashi M, Nozaki K, Okazoe T. Science 2022; 377: 756
    • 6a Yoshino N, Kato Y, Shimada Y, Williams CM, Matsubara S. Isr. J. Chem. 2021; 61: 380
    • 6b Yoshino N, Kato Y, Mabit T, Nagata Y, Williams CM, Harada M, Muranaka A, Uchiyama M, Matsubara S. Org. Lett. 2020; 22: 4083
    • 8a Luh T.-Y, Stock L.-M. J. Am. Chem. Soc. 1974; 96: 3712
    • 8b Della EW, Head NJ, Mallon P, Walton JC. J. Am. Chem. Soc. 1992; 112: 10730
  • 9 Eaton PE, Castaldi G. J. Am. Chem. Soc. 1985; 107: 724
  • 10 Eaton PE, Cunkle GT, Marchioro G, Martin RM. J. Am. Chem. Soc. 1987; 109: 948
    • 11a Bashir-Hashemi A. J. Am. Chem. Soc. 1988; 110: 7234
    • 11b For a computer approach see: Jayasuriya K, Alster J, Politzer P. J. Org. Chem. 1987; 52: 2306
    • 11c Bottaro JC, Penwell PE, Schmitt RJ. J. Org. Chem. 1991; 56: 1305
  • 12 Eaton PE, Lee C.-H, Xiong Y. J. Am. Chem. Soc. 1989; 111: 8016
    • 13a Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 13b Rohbogner CJ, Clososki GC, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 1503
  • 14 Takebe H, Yoshino N, Shimda Y, Williams CM, Matsubara S. Org. Lett. 2023; 25: 27
  • 15 Eaton PE, Higuchi H, Millikan R. Tetrahedron Lett. 1987; 28: 1055
  • 16 Okude R, Mori G, Yagi A, Itami K. Chem. Sci. 2020; 11: 7672
    • 17a He J, Wasa M, Chan KS. L, Shao O, Yu JQ. Chem. Rev. 2017; 117: 8754
    • 17b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 18 Cassar L, Eaton PE, Halpern J. J. Am. Chem. Soc. 1970; 92: 3515
    • 19a Houston SD, Chalmers BA, Savage GP, Williams CM. Org. Biomol. Chem. 2019; 17: 1067
    • 19b Nagaswa S, Hosaka M, Iwabuchi Y. Org. Lett. 2021; 23: 8717
  • 20 Reddy DS, Maggini M, Tsanaktsidis J, Eaton PE. Tetrahedron Lett. 1990; 31: 805
    • 21a Schreiner PR, Lauenstein O, Kolomitsyn IV, Nadi S, Fokin AA. Angew. Chem. Int. Ed. 1998; 37: 1895
    • 21b Fokin AA, Lauenstein O, Gunchenko PA, Schreiner PR. J. Am. Chem. Soc. 2001; 123: 1842
    • 21c Fokin AA, Schreiner PR, Berger R, Robinson GH, Wei P, Campana CF. J. Am. Chem. Soc. 2006; 128: 5332
    • 22a Bashir-Hashemi A. Angew. Chem., Int. Ed. Engl. 1993; 32: 612
    • 22b Bashir-Hashemi A, Li J, Gelber N, Ammon H. J. Org. Chem. 1995; 60: 698
    • 22c Collin DE, Kovacic K, Light ME, Linclau B. Org. Lett. 2021; 23: 5164
  • 23 Choi G, Lee GS, Park B, Kim D, Hong SH. Angew. Chem. Int. Ed. 2021; 60: 5467
  • 24 Zhang M.-X, Eaton PE, Gilardi R. Angew. Chem. Int. Ed. 2000; 39: 401
    • 25a Eaton PE, Galoppini E, Gilardi R. J. Am. Chem. Soc. 1994; 116: 7588
    • 25b Wlochal J, Davies RD. M, Burton J. Org. Lett. 2014; 16: 4049
    • 26a Tsanaktsidis J, Eatpn PE. Tetrahedron Lett. 1989; 30: 6967
    • 26b Kulbitski K, Nisnevich G, Gandelman M. Adv. Synth. Catal. 2011; 353: 1438
    • 27a Toriyama F, Cornella J, Wimmer L, Chen T.-G, Dixon DD. J. Am. Chem. Soc. 2016; 138: 11132
    • 27b Bernhard SS. R, Locke GM, Plunkett S, Meindl A, Flanagan KJ, Senge MO. Chem. Eur. J. 2018; 24: 1026
  • 28 Moriarty RM, Khosrowshahi JS, Miller RS, Flippen-Andersen J, Gilardi R. J. Am. Chem. Soc. 1989; 111: 8943
  • 29 Plunkett S, Flanagan KJ, Twamley B, Senge MO. Organometallics 2015; 34: 1408
  • 30 Collin DE, Folgueiras-Amador AA, Pletcher D, Light ME, Linclau B, Brown RC. D. Chem. Eur. J. 2020; 26: 374
  • 31 Moriarty RM, Khosrowshahi JS, Penmasta R. Tetrahedron Lett. 1989; 30: 791
  • 32 Kato Y, Williams CM, Uchiyama M, Matsubara S. Org. Lett. 2019; 21: 473
  • 33 Choi S.-Y, Eaton PE, Hollenberg PF, Liu KE, Lippard SJ, Newcomb M, Putt DA, Upadhyaya SP, Xiong Y. J. Am. Chem. Soc. 1996; 118: 6547
  • 34 Eaton PE, Xiong Y, Lee C.-H. J. Chin. Chem. Soc. 1991; 38: 303
  • 35 Anderson EA, McNamee RE, Thompson AL. J. Am. Chem. Soc. 2021; 143: 21246
  • 36 Schmidt VA, Quinn RK, Brusoe AT, Alexanian EJ. J. Am. Chem. Soc. 2014; 136: 14389
  • 37 Eaton PE, Xiong Y, Gilardi R. J. Am. Chem. Soc. 1993; 115: 10195
  • 38 Westphal MV, Wolfstädter BT, Plancher J.-M, Gatfield J, Carreira EM. ChemMedChem 2015; 10: 461
    • 39a Sterling AJ, Dürr AB, Smith RC, Anderson EA, Duarte F. Chem. Sci. 2020; 11: 4895
    • 39b Wu W, Gu J, Song J, Shaik S, Hiberty PC. Angew. Chem. Int. Ed. 2009; 48: 1407
    • 40a Hrovat DA, Borden WT. J. Am. Chem. Soc. 1990; 112: 875
    • 40b de Visser SP, Filatov M, Schreiner PR, Shaik S. Eur. J. Org. Chem. 2003; 4199
  • 41 Eaton PE, Maggini M. J. Am. Chem. Soc. 1988; 110: 7230
    • 42a Eaton PE, Li J, Upadhyaya SP. J. Org. Chem. 1995; 60: 966
    • 42b Eaton PE, Pramod K, Emrick T, Gilardi R. J. Am. Chem. Soc. 1999; 121: 4111
    • 43a Reddy DS, Sollott GP, Eaton PE. J. Org. Chem. 1989; 54: 722
    • 43b Moriarty RM, Tuladhar SM, Penmasta R, Awasthi AK. J. Am. Chem. Soc. 1990; 112: 3228
    • 44a So'n J.-Y, Aikonen S, Morgan N, Harmata AS, Sabatini JJ, Sausa RC, Byrd EF. C, Ess DH, Paton RS, Stephenson CR. J. J. Am. Chem. Soc. 2023; 145: 16355
    • 44b Smith E, Jones KD, O’Brien L, Argent SP, Salome C, Lefebvre Q, Valery A, Böcü M, Newton GN, Lam HW. J. Am. Chem. Soc. 2023; 145: 16365
    • 44c Fujiwara, K.; Nagasawa, S.; Maeyama, R.; Segawa, R.; Hirasawa, N.; Iwabuchi, Y. ChemRxiv, May 10, 2023, 10.26434/chemrxiv-2023-fgxxm.
  • 45 Takebe H, Matsubara S. Eur. J. Org. Chem. 2022; e202200567
  • 46 Takebe H, Matsubara S. Chem Lett. 2023; 52: 358