Synthesis 2023; 55(23): 3981-3990
DOI: 10.1055/a-2128-5335
paper

One-Pot Synthesis of Quinoxaline N-Oxides via Radical-Mediated Cyclization of Ketene N,S-Acetals

Ganesh Kumar
,
Subhasish Ray
,
Gaurav Shukla
,
We gratefully acknowledge the financial support from the Science and Engineering Research Board (CRG/2019/000058), IoE Incentive grant (Scheme No. 6031) and JC Bose National Fellowship (JCB/2020/000023), New Delhi. The authors (G.K., S.R. and G.S.) are thankful to UGC & SERB, New Delhi for fellowships.


Abstract

A facile and efficient one-pot synthesis of bench-stable quinoxaline N-oxides has been realized using α-oxoketene N,S-acetals and tert-butyl nitrite (TBN) in open air via cascade annulation. The double functionalization of N,S-acetals proceeds through an unanticipated (Csp2)–H nitrosation by NO radical (generated in situ by TBN) and subsequent intramolecular N-arylation leading to quinoxaline, which undergoes oxidation to quinoxaline N-oxides harboring three variegated substituents on their framework. Notably, two new C–N bonds are formed with the same N-oxide nitrogen. This protocol features short reaction time, good functional group tolerance and mild conditions, and does not require the use of either catalyst or external additive.

Supporting Information



Publication History

Received: 09 June 2023

Accepted after revision: 13 July 2023

Accepted Manuscript online:
13 July 2023

Article published online:
06 September 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1b Ghosh P, Kwon NY, Kim S, Han S, Lee SH, An W, Mishra NK, Han SB, Kim IS. Angew. Chem. Int. Ed. 2021; 60: 191
    • 1c Kerru N, Gummidi L, Maddila S, Gangu KK, Jonnalagadda SB. Molecules 2020; 25: 1909
    • 2a Jones G. In Comprehensive Heterocyclic Chemistry II, Vol. 5. Katritzky AR, Rees CW, Scriven EF. V, McKillop A. Pergamon; Oxford: 1996: 167
    • 2b Pharmaceutical Chemistry. Drug Synthesis, Vol. 1. Roth HJ, Kleemann A. Prentice Hall Europe; London: 1988: 407
    • 2c Cheng G, Sa W, Cao C, Guo L, Hao H, Liu Z, Wang X, Yuan Z. Front. Pharmacol. 2016; 7: 64
    • 2d Vieira M, Pinheiro C, Fernandes R, Noronha J, Prudêncio C. Microbiol. Res. 2014; 169: 287
    • 2e Montana M, Montero V, Khoumeri O, Vanelle P. Molecules 2020; 25: 2784
    • 3a Electronic Materials: The Oligomer Approach . Mul-len K, Wegner G. Wiley-VCH; Weinheim: 1998
    • 3b Carta A, Paglietti G, Nikookar ME. R, Sanna P, Sechi L, Zanetti S. Eur. J. Med. Chem. 2002; 37: 355
    • 3c Gale PA. Acc. Chem. Res. 2006; 39: 465
    • 3d Shi L, Hu W, Wu J, Zhou H, Zhou H, Li X. Mini-Rev. Med. Chem. 2018; 18: 392
    • 4a An Z.-Y, Zhao L.-B, Wu M.-Z, Ni J.-X, Yu G.-Q, Yan R.-L. Chem. Commun. 2017; 53: 11572
    • 4b Huo H.-R, Tang X.-Y, Gong Y.-F. Synthesis 2018; 50: 2727
    • 4c Xie C.-X, Feng L, Li W.-L, Ma X.-J, Ma X.-K, Liu Y.-H, Ma C. Org. Biomol. Chem. 2016; 14: 8529
    • 4d Khatoon H, Abdulmalek E. Molecules 2021; 26: 1055
    • 5a Liu S.-S, Zhang P.-J, Zhang Y.-Y, Nan J, Ma Y.-M. Org. Chem. Front. 2021; 8: 5858
    • 5b Jiao Y.-X, Wu L.-L, Zhu H.-M, Qin J.-K, Pan C.-X, Mo D.-L, Su G.-F. J. Org. Chem. 2017; 82: 4407
    • 5c Zhou J, Li Z, Sun Z, Ren Q, Zhang Q, Li H, Li J. J. Org. Chem. 2020; 85: 4365
    • 6a Wang W, Shen Y, Meng X, Zhao M, Chen Y, Chen B. Org. Lett. 2011; 13: 4514
    • 6b Yang H.-R, Hu Z.-Y, Li X.-C, Wu L, Guo X.-X. Org. Lett. 2022; 24: 8392
    • 7a Cooper SM, Heaney H, Newbold JA, Sanderson WR. Synlett 1990; 533
    • 7b Kobayashi Y, Kumadaki I, Sato H, Sekine Y, Hara T. Chem. Pharm. Bull. 1974; 22: 2097
    • 8a Mixan CE, Pews RG. J. Org. Chem. 1977; 42: 1869
    • 8b Carmeli M, Rozen S. J. Org. Chem. 2006; 71: 5761
  • 9 Chen F, Huang X, Li X, Shen T, Zou M, Jiao N. Angew. Chem. Int. Ed. 2014; 53: 10495
    • 10a O’Donnell G, Poeschl R, Zimhony O, Gunaratnam M, Moreira JB. C, Neidle S, Evangelopoulos D, Bhakta S, Malkinson JP, Boshoff HI, Lenaerts A, Gibbons S. J. Nat. Prod. 2009; 72: 360
    • 10b Nicholas GM, Blunt JW, Munro MH. G. J. Nat. Prod. 2001; 64: 341
    • 11a Malkov AV, Kocovsky P. Eur. J. Org. Chem. 2007; 29
    • 11b Takenaka N, Sarangthem RS, Captain B. Angew. Chem. Int. Ed. 2008; 47: 9708
    • 12a Naylor MA, Stephens MA, Nolan J, Sutton B, Tocher JH, Fielden EM, Adams GE, Stratford I. J. Anticancer Drug Des. 1993; 8: 439
    • 12b Sutton BM, Reeves NJ, Naylor MA, Fielden EM, Cole S, Adams GE, Stratford IJ. Int. J. Radiat. Oncol. Biol. Phys. 1994; 29: 339
    • 12c Kobayashi Y, Kuroda M, Toba N, Okada M, Tanaka R, Kimachi T. Org. Lett. 2011; 13: 6280
  • 13 Albini A, Pietra S. Heterocyclic N-Oxides 1991
    • 14a Maroulis AJ, Domzaridou KC, Hadjiantoniou-Maroulis CP. Synthesis 1998; 1769
    • 14b Aggarwal R, Sumran G, Saini A, Singh SP. Tetrahedron Lett. 2006; 47: 4969
    • 14c Shi Z, Koester DC, Boultadakis-Arapinis M, Glorius F. J. Am. Chem. Soc. 2013; 135: 12204
    • 15a Ila H, Junjappa H, Mohanta PK. In Progress in Heterocyclic Chemistry: A Critical Review of the 2000 Literature Preceded by Two Chapters on Current Heterocyclic Topics, Vol. 13, Chap. 1. Gribble GW, Thomas LG. Pergamon Press; Oxford: 2001
    • 15b Yugandar S, Konda S, Parameshwarappa G, Ila H. J. Org. Chem. 2016; 81: 5606
    • 15c Wen L.-R, Man N.-N, Yuan W.-K, Li M. J. Org. Chem. 2016; 81: 5942
    • 15d Liu Z, Gao R, Lou J, He Y, Yu Z. Adv. Synth. Catal. 2018; 360: 3097
    • 16a Venkatesh C, Singh B, Mahata PK, Ila H, Junjappa H. Org. Lett. 2005; 7: 2169
    • 16b Verma GK, Verma RK, Shukla G, Nagaraju A, Singh MS. Tetrahedron 2013; 69: 6612
    • 16c Huang F, Liu Z, Wang Q, Lou J, Yu Z. Org. Lett. 2017; 19: 3660
    • 17a Dahiya A, Sahoo AK, Alam T, Patel BK. Chem. Asian J. 2019; 14: 4454
    • 17b He Y, Zheng Z, Liu Y, Qiao J, Zhang X, Fan X. Org. Lett. 2019; 21: 1676
    • 17c Chen R, Zhao Y, Fang S, Long W, Sun H, Wan X. Org. Lett. 2017; 19: 5896
    • 17d Wang X.-D, Zhu L.-H, Liu P, Wang X.-Y, Yuan H.-Y, Zhao Y.-L. J. Org. Chem. 2019; 84: 16214
    • 17e Yan X.-M, Robbins MD, White JM. J. Phys. Chem. B 2004; 108: 18925
    • 17f Ihm H, Medlin JW, Barteau MA, White JM. Langmuir 2001; 17: 798
    • 17g Song W, Liu Y, Yan N, Wan J.-P. Org. Lett. 2023; 25: 2139
    • 17h Zhou P, Hu B, Li L, Rao K, Yang J, Yu F. J. Org. Chem. 2017; 82: 13268
    • 17i Gan L, Yu Q, Liu Y, Wan J.-P. J. Org. Chem. 2021; 86: 1231
    • 17j Yu Q, Liu Y, Wan J.-P. Chin. Chem. Lett. 2021; 32: 3514
    • 18a He X, Li R, Choy PY, Duan J, Yin Z, Xu K, Tang Q, Zhong R.-L, Shang Y, Kwong FY. Chem. Sci. 2022; 13: 13617
    • 18b Huang Z, He Y, Wang L, Li J, Xu B.-H, Zhou Y.-G, Yu Z. J. Org. Chem. 2022; 87: 4424
    • 19a Srivastava A, Shukla G, Nagaraju A, Verma GK, Raghuvanshi K, Jones RC. F, Singh MS. Org. Biomol. Chem. 2014; 12: 5484
    • 19b Shukla G, Srivastava A, Nagaraju A, Raghuvanshi K, Singh MS. Adv. Synth. Catal. 2015; 357: 3969
    • 19c Yadav D, Shukla G, Ansari MA, Srivastava A, Singh MS. Tetrahedron 2018; 74: 5920