RSS-Feed abonnieren
DOI: 10.1055/a-2138-6082
Der neonatale Fc-Rezeptor: Biologische Grundlagen und Potenzial der therapeutischen Blockade in der Behandlung immunhämatologischer Erkrankungen
The Neonatal Fc Receptor: Biological Basis and Potential of Therapeutic Blockade in the Treatment of Immunohematological Diseases
Zusammenfassung
Durch den Transport von mütterlichen IgG-Antikörpern in die Zirkulation des Fetus erhalten die Nachkommen den humoralen „Nestschutz“ bzw. die mütterliche „Leihimmunität“. Der transplazentare Transport von IgG-Antikörpern erfolgt in einem komplexen Prozess, an dem der neonatale Rezeptor für das kristallisierbare Fragment von IgG-Molekülen (Fragment cristallizable receptor neonatal, FcRn) essenziell beteiligt ist. FcRn ist im adulten Organismus ubiquitär exprimiert, reguliert die IgG- und Albumin-Homöostase, sowie die angeborene und adaptive Immunität gegen IgG-Immunkomplexe und ist damit an der Abwehr infektiöser Erkrankungen und der Anti-Tumor-Immunität beteiligt. Therapeutische FcRn-Antagonisten blockieren das Recycling von IgG-Molekülen und führen zu einer Absenkung der IgG-Serumspiegel. Im Rahmen einer Schwangerschaft blockieren therapeutische FcRn-Antagonisten den transplazentaren IgG-Transport. Die vorliegende Übersichtsarbeit soll den aktuellen Stand der potenziellen Anwendung von FcRn-Antagonisten bei immunhämatologischen Erkrankungen durch Autoantikörper sowie im Rahmen von Erkrankungen des Fetus und Neugeborenen durch mütterliche Alloantikörper darstellen.
Abstract
The transport of maternal IgG antibodies into the fetal circulation provides the offspring with passive humoral immunity. The transplacental transport of IgG antibodies takes place in a complex process in which the neonatal receptor for the crystallizable fragment of IgG molecules (fragment cristallizable receptor neonatal, FcRn) is essentially involved. FcRn is ubiquitously expressed in the adult organism, regulates IgG and albumin homeostasis as well as innate and adaptive immunity against IgG immune complexes and is thus involved in the defense against infectious diseases and anti-tumor immunity. Therapeutic FcRn antagonists inhibit the recycling of IgG molecules and lead to a reduction in IgG serum levels. In the context of pregnancy, therapeutic FcRn antagonists inhibit transplacental IgG transport. This review is intended to present the status of the potential use of FcRn antagonists in immunohematological diseases caused by autoantibodies and in diseases of the fetus and newborn caused by maternal alloantibodies.
Schlüsselwörter
Fragment crystallizable receptor neonatal (FcRn) - FcRn-targeted therapy - Immunthrombozytopenie - Hämolytische Erkrankung des Fötus und des NeugeborenenKeywords
Fragment crystallizable receptor neonatal (FcRn) - FcRn-targeted therapy - Immune thrombocytopenia - Hemolytic disease of the fetus and newbornPublikationsverlauf
Artikel online veröffentlicht:
08. Mai 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Brambell FWR. The passive immunity of the young mammal. Biological Reviews 1958; 33: 488-531
- 2 Ehrlich P. Ueber Immunität durch Vererbung und Säugung. Zeitschr f Hygiene 1892; 12: 183-203
- 3 Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature 1989; 337: 184-187
- 4 Burmeister WP, Gastinel LN, Simister NE. et al. Crystal structure at 2.2 A resolution of the MHC-related neonatal Fc receptor. Nature 1994; 372: 336-343
- 5 Kandil E, Egashira M, Miyoshi O. et al. The human gene encoding the heavy chain of the major histocompatibility complex class I-like Fc receptor (FCGRT) maps to 19q13.3. Cytogenet Cell Genet 1996; 73: 97-98
- 6 Sachs UJH, Socher I, Braeunlich CG. et al. A variable number of tandem repeats polymorphism influences the transcriptional activity of the neonatal Fc receptor alpha-chain promoter. Immunology 2006; 119: 83-89
- 7 Kiskova T, Mytsko Y, Schepelmann M. et al. Expression of the neonatal Fc-receptor in placental-fetal endothelium and in cells of the placental immune system. Placenta 2019; 78: 36-43
- 8 Latvala S, Jacobsen B, Otteneder MB. et al. Distribution of FcRn Across Species and Tissues. J Histochem Cytochem 2017; 65: 321-333
- 9 Zhu X, Meng G, Dickinson BL. et al. MHC class I-related neonatal Fc receptor for IgG is functionally expressed in monocytes, intestinal macrophages, and dendritic cells. J Immunol 2001; 166: 3266-3276
- 10 Vidarsson G, Stemerding AM, Stapleton NM. et al. FcRn: an IgG receptor on phagocytes with a novel role in phagocytosis. Blood 2006; 108: 3573-3579
- 11 Ober RJ, Martinez C, Vaccaro C. et al. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J Immunol 2004; 172: 2021-2029
- 12 Pyzik M, Kozicky LK, Gandhi AK. et al. The therapeutic age of the neonatal Fc receptor. Nat Rev Immunol 2023; 23: 415-432
- 13 Stapleton NM, Andersen JT, Stemerding AM. et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat Commun 2011; 2: 599
- 14 Vaccaro C, Zhou J, Ober RJ. et al. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 2005; 23: 1283-1288
- 15 Ghetie V, Hubbard JG, Kim JK. et al. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 1996; 26: 690-696
- 16 Israel EJ, Wilsker DF, Hayes KC. et al. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 1996; 89: 573-578
- 17 Roopenian DC, Christianson GJ, Sproule TJ. et al. The MHC class I-like IgG receptor controls perinatal IgG transport, IgG homeostasis, and fate of IgG-Fc-coupled drugs. J Immunol 2003; 170: 3528-3533
- 18 Wani MA, Haynes LD, Kim J. et al. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A 2006; 103: 5084-5089
- 19 Akilesh S, Christianson GJ, Roopenian DC. et al. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J Immunol 2007; 179: 4580-4588
- 20 Montoyo HP, Vaccaro C, Hafner M. et al. Conditional deletion of the MHC class I-related receptor FcRn reveals the sites of IgG homeostasis in mice. Proc Natl Acad Sci U S A 2009; 106: 2788-2793
- 21 Challa DK, Wang X, Montoyo HP. et al. Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis. MAbs 2019; 11: 848-860
- 22 Kim J, Hayton WL, Robinson JM. et al. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol 2007; 122: 146-155
- 23 Ward ES, Zhou J, Ghetie V. et al. Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 2003; 15: 187-195
- 24 West AP, Herr AB, Bjorkman PJ. The chicken yolk sac IgY receptor, a functional equivalent of the mammalian MHC-related Fc receptor, is a phospholipase A2 receptor homolog. Immunity 2004; 20: 601-610
- 25 DeSesso JM, Williams AL, Ahuja A. et al. The placenta, transfer of immunoglobulins, and safety assessment of biopharmaceuticals in pregnancy. Crit Rev Toxicol 2012; 42: 185-210
- 26 Gitlin D, Boesman M. Serum alpha-fetoprotein, albumin, and gamma-G-globulin in the human conceptus. J Clin Invest 1966; 45: 1826-1838
- 27 Jauniaux E, Jurkovic D, Gulbis B. et al. Materno-fetal immunoglobulin transfer and passive immunity during the first trimester of human pregnancy. Hum Reprod 1995; 10: 3297-3300
- 28 Malek A, Sager R, Kuhn P. et al. Evolution of maternofetal transport of immunoglobulins during human pregnancy. Am J Reprod Immunol 1996; 36: 248-255
- 29 Palmeira P, Quinello C, Silveira-Lessa AL. et al. IgG placental transfer in healthy and pathological pregnancies. Clin Dev Immunol 2012; 2012: 985646
- 30 Clements T, Rice TF, Vamvakas G. et al. Update on transplacental transfer of IgG subclasses: impact of maternal and fetal factors. Front Immunol 2020; 11: 1920
- 31 Firan M, Bawdon R, Radu C. et al. The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of gamma-globulin in humans. Int Immunol 2001; 13: 993-1002
- 32 Roy S, Nanovskaya T, Patrikeeva S. et al. M281, an anti-FcRn antibody, inhibits IgG transfer in a human ex vivo placental perfusion model. Am J Obstet Gynecol 2019; 220: 498.e1-498.e9
- 33 Qi T, Cao Y. In Translation: FcRn across the Therapeutic Spectrum. Int J Mol Sci 2021; 22
- 34 Blumberg LJ, Humphries JE, Jones SD. et al. Blocking FcRn in humans reduces circulating IgG levels and inhibits IgG immune complex-mediated immune responses. Sci Adv 2019; 5: eaax9586
- 35 Baker K, Rath T, Flak MB. et al. Neonatal Fc receptor expression in dendritic cells mediates protective immunity against colorectal cancer. Immunity 2013; 39: 1095-1107
- 36 Hubbard JJ, Pyzik M, Rath T. et al. FcRn is a CD32a coreceptor that determines susceptibility to IgG immune complex-driven autoimmunity. J Exp Med 2020; 217
- 37 Cines DB, Zaitsev S, Rauova L. et al. FcRn augments induction of tissue factor activity by IgG-containing immune complexes. Blood 2020; 135: 2085-2093
- 38 Ruggeri M, Rodeghiero F. Thrombotic risk in patients with immune haemolytic anaemia. Br J Haematol 2016; 172: 144-146
- 39 Qiao S-W, Kobayashi K, Johansen F-E. et al. Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci U S A 2008; 105: 9337-9342
- 40 Baker K, Qiao S-W, Kuo TT. et al. Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8-CD11b+ dendritic cells. Proc Natl Acad Sci U S A 2011; 108: 9927-9932
- 41 Ochsner SP, Li W, Rajendrakumar AM. et al. FcRn-targeted mucosal vaccination against influenza virus infection. J Immunol 2021; 207: 1310-1321
- 42 Li W, Wang T, Rajendrakumar AM. et al. An FcRn-targeted mucosal vaccine against SARS-CoV-2 infection and transmission. Nat Commun 2023; 14: 7114
- 43 Dalloneau E, Baroukh N, Mavridis K. et al. Downregulation of the neonatal Fc receptor expression in non-small cell lung cancer tissue is associated with a poor prognosis. Oncotarget 2016; 7: 54415-54429
- 44 Cadena Castaneda D, Brachet G, Goupille C. et al. The neonatal Fc receptor in cancer FcRn in cancer. Cancer Med 2020; 9: 4736-4742
- 45 Ulrichts P, Guglietta A, Dreier T. et al. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest 2018; 128: 4372-4386
- 46 Kiessling P, Lledo-Garcia R, Watanabe S. et al. The FcRn inhibitor rozanolixizumab reduces human serum IgG concentration: A randomized phase 1 study. Sci Transl Med 2017; 9
- 47 Ling LE, Hillson JL, Tiessen RG. et al. M281, an Anti-FcRn Antibody: Pharmacodynamics, Pharmacokinetics, and Safety Across the Full Range of IgG Reduction in a First-in-Human Study. Clin Pharmacol Ther 2019; 105: 1031-1039
- 48 Yap DYH, Hai J, Lee PCH. et al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of HBM9161, a novel FcRn inhibitor, in a phase I study for healthy Chinese volunteers. Clin Transl Sci 2021; 14: 1769-1779
- 49 Howard JF, Bril V, Vu T. et al. Long-term safety, tolerability, and efficacy of efgartigimod (ADAPT+): interim results from a phase 3 open-label extension study in participants with generalized myasthenia gravis. Front Neurol 2023; 14: 1284444
- 50 Newland AC, Sánchez-González B, Rejtő L. et al. Phase 2 study of efgartigimod, a novel FcRn antagonist, in adult patients with primary immune thrombocytopenia. Am J Hematol 2020; 95: 178-187
- 51 Robak T, Kaźmierczak M, Jarque I. et al. Phase 2 multiple-dose study of an FcRn inhibitor, rozanolixizumab, in patients with primary immune thrombocytopenia. Blood Adv 2020; 4: 4136-4146
- 52 Broome CM, McDonald V, Miyakawa Y. et al. Efficacy and safety of the neonatal Fc receptor inhibitor efgartigimod in adults with primary immune thrombocytopenia (ADVANCE IV): a multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2023; 402: 1648-1659
- 53 Mahamad S, Arnold DM. Inhibition of neonatal Fc receptor as a treatment for immune thrombocytopenia. Lancet 2023; 402: 1599-1601
- 54 Murakhovskaya I, Fattizzo B, Cueto D. et al. Efficacy and safety of Nipocalimab, an FcRn blocker, in warm autoimmune hemolytic anemia (wAIHA): energy phase 2/3 study design. Hematology, Transfusion and Cell Therapy 2022; 44: S11
- 55 Johnson&Johnson. Johnson & Johnson’s nipocalimab granted U.S. FDA Breakthrough Therapy Designation for the treatment of individuals at high risk for severe hemolytic disease of the fetus and newborn (HDFN) https://www.jnj.com/media-center/press-releases/johnson-johnsons-nipocalimab-granted-u-s-fda-breakthrough-therapy-designation-for-the-treatment-of-individuals-at-high-risk-for-severe-hemolytic-disease-of-the-fetus-and-newborn-hdfn (abgerufen am 23.04.2024)
- 56 Zwiers C, van der Bom JG, van Kamp IL. et al. Postponing Early intrauterine Transfusion with Intravenous immunoglobulin Treatment; the PETIT study on severe hemolytic disease of the fetus and newborn. Am J Obstet Gynecol 2018; 219: 291.e1-291.e9
- 57 Maisonneuve E, Dugas A, Friszer S. et al. Effect of intravenous immunoglobulins to postpone the gestational age of first intrauterine transfusion in very severe red blood cell alloimmunization: A case-control study. J Gynecol Obstet Hum Reprod 2021; 50: 102119
- 58 Vlachodimitropoulou E, Lo TK, Bambao C. et al. Intravenous immunoglobulin in the management of severe early onset red blood cell alloimmunisation. Br J Haematol 2023; 200: 100-106
- 59 Liley AW. Intrauterine transfusion of foetus in haemolytic disease. Br Med J 1963; 2: 1107-1109