Transfusionsmedizin 2024; 14(04): 190-199
DOI: 10.1055/a-2139-1976
Übersicht

Das therapeutische Potenzial von extrazellulären Vesikeln von mesenchymalen Stromazellen

Therapeutic Potential of Mesenchymal Stromal Cell-derived Small Extracellular Vesicles
Tanja J. Kutzner
1   Institut für Transfusionsmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
,
Fabiola Nardi Bauer
1   Institut für Transfusionsmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
2   Innere Klinik (Tumorforschung), Westdeutsches Tumorzentrum, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
,
Bernd Giebel
1   Institut für Transfusionsmedizin, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Deutschland
› Author Affiliations

Zusammenfassung

Kleine (small) extrazelluläre Vesikel (sEVs) sind biologische Nanopartikel mit Größen von unter 200 nm, die von praktisch allen Zellen freigesetzt und in allen Körperflüssigkeiten nachgewiesen werden können. Ihre Zusammensetzung ist zellspezifisch, und ein Teil der sEVs kann komplexe Informationen von der sendenden zu spezifisch ausgewählten Zielzellen übertragen. Abhängig von ihrem Ursprung können sEVs physiologische und pathophysiologische Prozesse steuern. sEVs, die von mesenchymalen Stamm-/Stromazellen (MSCs) freigesetzt werden, vermitteln beispielsweise therapeutische Aktivitäten bei einer Vielzahl verschiedener Krankheiten, deren Symptomatik von Entzündungsprozessen geprägt ist. Obwohl ihre konkreten Wirkmechanismen (mode of action; MoA) sowie ihre Wirkorte (side of action; SoA) noch nicht ausreichend untersucht wurden, scheint es, dass MSC-sEVs multimodal wirken. Es gibt Hinweise darauf, dass MSC-sEV-Präparate als Teil ihrer therapeutischen Aktivitäten pro-inflammatorische in regulatorische/tolerogene Immunantworten umwandeln, angiogene und pro-regenerative Prozesse fördern sowie anti-apoptotisch und energieerhaltend wirken. Hier beschreiben wir die Historie, die zur Entdeckung der therapeutischen Aktivitäten von MSC-sEVs geführt hat, einige ihrer therapeutischen Anwendungsfelder und Herausforderungen bei ihrer effektiven Translation in die Klinik.

Abstract

Small extracellular vesicles (sEVs) are biological nanoparticles with sizes below 200 nm that are released by virtually all cells and are detected in all body fluids. Assembled in cell type specific manners, at least a proportion of the sEVs can transmit complex information from the sending to specifically selected target cells. Depending on their origin, signalling sEVs can modulate physiological and pathophysiological processes. sEVs released from mesenchymal stem/ stromal cells (MSCs) for example mediate therapeutic activities in an increasing number of different diseases. Although their concrete mechanisms of action (MoA) as well as their side(s) of action (SoA) have not been sufficiently dissected, yet, MSC-sEVs apparently act in multimodal manners. Evidence has been provided that as part of their therapeutic activities MSC-sEV preparations can modulate pro-inflammatory into regulatory/tolerogenic immune responses, promote angiogenic and pro-regenerative processes and act anti-apoptotically as well as energy restoring. Here, we summarize the history behind the discovery of the therapeutic activities of MSC-sEVs, some of their therapeutic application fields, and challenges connected with their effective translation into the clinics.



Publication History

Article published online:
14 November 2024

© 2024. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Bjornson CR, Rietze RL, Reynolds BA. et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo. Science 1999; 283: 534-537
  • 2 Mezey E, Chandross KJ, Harta G. et al. Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 2000; 290: 1779-1782
  • 3 Friedenstein AJ, Deriglasova UF, Kulagina NN. et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method. Exp Hematol 1974; 2: 83-92
  • 4 Friedenstein AJ, Petrakova KV, Kurolesova AI. et al. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6: 230-247
  • 5 Pittenger MF, Mackay AM, Beck SC. et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143-147
  • 6 Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9: 641-650
  • 7 Kogler G, Sensken S, Airey JA. et al. A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 2004; 200: 123-135
  • 8 Jiang Y, Jahagirdar BN, Reinhardt RL. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41-49
  • 9 Lemischka I. Rethinking somatic stem cell plasticity. Nat Biotechnol 2002; 20: 425
  • 10 Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med 2001; 7: 259-264
  • 11 Porada CD, Zanjani ED, Almeida-Porad G. Adult mesenchymal stem cells: a pluripotent population with multiple applications. Curr Stem Cell Res Ther 2006; 1: 365-369
  • 12 Munoz-Elias G, Woodbury D, Black IB. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 2003; 21: 437-448
  • 13 Pittenger MF, Martin BJ. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 2004; 95: 9-20
  • 14 Di Nicola M, Carlo-Stella C, Magni M. et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838-3843
  • 15 Bartholomew A, Sturgeon C, Siatskas M. et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Experimental hematology 2002; 30: 42-48
  • 16 Meisel R, Zibert A, Laryea M. et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619-4621
  • 17 Di Ianni M, Del Papa B, De Ioanni M. et al. Mesenchymal cells recruit and regulate T regulatory cells. Exp Hematol 2008; 36: 309-318
  • 18 Casiraghi F, Azzollini N, Cassis P. et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells. J Immunol 2008; 181: 3933-3946
  • 19 Corcione A, Benvenuto F, Ferretti E. et al. Human mesenchymal stem cells modulate B-cell functions. Blood 2006; 107: 367-372
  • 20 Jiang XX, Zhang Y, Liu B. et al. Human mesenchymal stem cells inhibit differentiation and function of monocyte-derived dendritic cells. Blood 2005; 105: 4120-4126
  • 21 Spaggiari GM, Capobianco A, Becchetti S. et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006; 107: 1484-1490
  • 22 Spaggiari GM, Capobianco A, Abdelrazik H. et al. Mesenchymal stem cells inhibit natural killer-cell proliferation, cytotoxicity, and cytokine production: role of indoleamine 2,3-dioxygenase and prostaglandin E2. Blood 2008; 111 (1327/1333)
  • 23 Selmani Z, Naji A, Zidi I. et al. Human leukocyte antigen-G5 secretion by human mesenchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells 2008; 26: 212-222
  • 24 Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 2005; 105: 1815-1822
  • 25 Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol 2012; 12: 383-396
  • 26 Wang Y, Chen X, Cao W. et al. Plasticity of mesenchymal stem cells in immunomodulation: pathological and therapeutic implications. Nat Immunol 2014; 15: 1009-1016
  • 27 Beyth S, Borovsky Z, Mevorach D. et al. Human mesenchymal stem cells alter antigen-presenting cell maturation and induce T-cell unresponsiveness. Blood 2005; 105: 2214-2219
  • 28 Malard F, Huang XJ, Sim JPY. Treatment and unmet needs in steroid-refractory acute graft-versus-host disease. Leukemia 2020; 34: 1229-1240
  • 29 Murata M, Teshima T. Treatment of Steroid-Refractory Acute Graft-Versus-Host Disease Using Commercial Mesenchymal Stem Cell Products. Front Immunol 2021; 12: 724380
  • 30 Zeiser R, von Bubnoff N, Butler J. et al. Ruxolitinib for Glucocorticoid-Refractory Acute Graft-versus-Host Disease. N Engl J Med 2020; 382: 1800-1810
  • 31 Le Blanc K, Rasmusson I, Sundberg B. et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439-1441
  • 32 Galipeau J. The mesenchymal stromal cells dilemma – does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road?. Cytotherapy 2013; 15: 2-8
  • 33 Kebriaei P, Hayes J, Daly A. et al. A Phase 3 Randomized Study of Remestemcel-L versus Placebo Added to Second-Line Therapy in Patients with Steroid-Refractory Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2020; 26: 835-844
  • 34 Kurtzberg J, Abdel-Azim H, Carpenter P. et al. A Phase 3, Single-Arm, Prospective Study of Remestemcel-L, Ex Vivo Culture-Expanded Adult Human Mesenchymal Stromal Cells for the Treatment of Pediatric Patients Who Failed to Respond to Steroid Treatment for Acute Graft-versus-Host Disease. Biol Blood Marrow Transplant 2020; 26: 845-854
  • 35 Kurtzberg J, Prockop S, Chaudhury S. et al. Study 275: Updated Expanded Access Program for Remestemcel-L in Steroid-Refractory Acute Graft-versus-Host Disease in Children. Biol Blood Marrow Transplant 2020; 26: 855-864
  • 36 Galipeau J, Sensebe L. Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell 2018; 22: 824-833
  • 37 Burnham AJ, Daley-Bauer LP, Horwitz EM. Mesenchymal stromal cells in hematopoietic cell transplantation. Blood Adv 2020; 4: 5877-5887
  • 38 Garcia-Olmo D, Garcia-Arranz M. The history of Crohn's perianal fistula treatment with mesenchymal stem cells: the story of darvadstrocel. Expert Opin Biol Ther 2023; 23: 1197-1202
  • 39 Garcia-Olmo D, Gilaberte I, Binek M. et al. Follow-up Study to Evaluate the Long-term Safety and Efficacy of Darvadstrocel (Mesenchymal Stem Cell Treatment) in Patients With Perianal Fistulizing Crohnʼs Disease: ADMIRE-CD Phase 3 Randomized Controlled Trial. Dis Colon Rectum 2022; 65: 713-720
  • 40 Serclova Z, Garcia-Olmo D, Chen ST. et al. Efficacy and safety of darvadstrocel treatment in patients with complex perianal fistulas and Crohn's Disease: results from the global ADMIRE-CD II phase 3 study. J Crohns Colitis 2024; 18: I34-I35
  • 41 Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006; 98: 1076-1084
  • 42 Lee RH, Pulin AA, Seo MJ. et al Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5: 54-63 S1934-5909(09)00212-4 [pii] 10.1016/j.stem.2009.05.003
  • 43 Schrepfer S, Deuse T, Reichenspurner H. et al. Stem cell transplantation: the lung barrier. Transplant Proc 2007; 39: 573-576
  • 44 Gao J, Dennis JE, Muzic RF. et al. The dynamic in vivo distribution of bone marrow-derived mesenchymal stem cells after infusion. Cells Tissues Organs 2001; 169: 12-20
  • 45 Imberti B, Morigi M, Tomasoni S. et al. Insulin-like growth factor-1 sustains stem cell mediated renal repair. J Am Soc Nephrol 2007; 18: 2921-2928
  • 46 Caplan AI. New MSC: MSCs as pericytes are Sentinels and gatekeepers. J Orthop Res 2017; 35: 1151-1159
  • 47 Timmers L, Lim SK, Arslan F. et al. Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 2007; 1: 129-137
  • 48 Gnecchi M, He H, Noiseux N. et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20: 661-669
  • 49 Gnecchi M, He H, Liang OD. et al. Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 2005; 11: 367-368
  • 50 Lai RC, Arslan F, Lee MM. et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res 2010; 4: 214-222
  • 51 Bruno S, Grange C, Deregibus MC. et al. Mesenchymal stem cell-derived microvesicles protect against acute tubular injury. J Am Soc Nephrol 2009; 20: 1053-1067
  • 52 Yanez-Mo M, Siljander PR, Andreu Z. et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles 2015; 4: 27066
  • 53 Lener T, Gimona M, Aigner L. et al. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J Extracell Vesicles 2015; 4: 30087
  • 54 Wiklander OPB, Brennan MA, Lotvall J. et al. Advances in therapeutic applications of extracellular vesicles. Sci Transl Med 2019; 11
  • 55 Fais S, O'Driscoll L, Borras FE. et al. Evidence-Based Clinical Use of Nanoscale Extracellular Vesicles in Nanomedicine. ACS Nano 2016; 10: 3886-3899
  • 56 Chargaff E, West R. The biological significance of the thromboplastic protein of blood. J Biol Chem 1946; 166: 189-197
  • 57 Wolf P. The nature and significance of platelet products in human plasma. Br J Haematol 1967; 13: 269-288
  • 58 De Broe M, Wieme R, Roels F. Letter: Membrane fragments with koinozymic properties released from villous adenoma of the rectum. Lancet 1975; 2: 1214-1215
  • 59 Benz EW, Moses HL. Small, virus-like particles detected in bovine sera by electron microscopy. J Natl Cancer Inst 1974; 52: 1931-1934
  • 60 Dalton AJ. Microvesicles and vesicles of multivesicular bodies versus "virus-like" particles. J Natl Cancer Inst 1975; 54: 1137-1148
  • 61 Stegmayr B, Ronquist G. Promotive effect on human sperm progressive motility by prostasomes. Urol Res 1982; 10: 253-257
  • 62 Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol 1983; 97: 329-339
  • 63 Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 1983; 33: 967-978
  • 64 Johnstone RM, Adam M, Hammond JR. et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262: 9412-9420
  • 65 Raposo G, Nijman HW, Stoorvogel W. et al. B lymphocytes secrete antigen-presenting vesicles. J Exp Med 1996; 183: 1161-1172
  • 66 Valadi H, Ekstrom K, Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007; 9: 654-659
  • 67 Ratajczak J, Miekus K, Kucia M. et al. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 2006; 20: 847-856
  • 68 Kim DK, Lee J, Kim SR. et al. EVpedia: a community web portal for extracellular vesicles research. Bioinformatics 2015; 31: 933-939
  • 69 Gould SJ, Raposo G. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J Extracell Vesicles 2013; 2
  • 70 Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of cell biology 2013; 200: 373-383
  • 71 Thery C, Witwer KW, Aikawa E. et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 2018; 7: 1535750
  • 72 Welsh JA, Goberdhan DCI, O'Driscoll L. et al. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13: e12404
  • 73 Bergmann A, Steller H. Apoptosis, stem cells, and tissue regeneration. Sci Signal 2010; 3: re8
  • 74 Labusek N, Mouloud Y, Koster C. et al. Extracellular vesicles from immortalized mesenchymal stromal cells protect against neonatal hypoxic-ischemic brain injury. Inflamm Regen 2023; 43: 24
  • 75 Labusek N, Ghari P, Mouloud Y. et al. Hypothermia combined with extracellular vesicles from clonally expanded immortalized mesenchymal stromal cells improves neurodevelopmental impairment in neonatal hypoxic-ischemic brain injury. J Neuroinflammation 2023; 20: 280
  • 76 Doeppner TR, Herz J, Gorgens A. et al. Extracellular Vesicles Improve Post-Stroke Neuroregeneration and Prevent Postischemic Immunosuppression. Stem Cells Transl Med 2015; 4: 1131-1143
  • 77 Meisel C, Meisel A. Suppressing immunosuppression after stroke. N Engl J Med 2011; 365: 2134-2136
  • 78 Meisel C, Schwab JM, Prass K. et al. Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 2005; 6: 775-786
  • 79 Wang C, Borger V, Sardari M. et al. Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles Induce Ischemic Neuroprotection by Modulating Leukocytes and Specifically Neutrophils. Stroke 2020; 51: 1825-1834
  • 80 Roszkowski S. Therapeutic potential of mesenchymal stem cell-derived exosomes for regenerative medicine applications. Clin Exp Med 2024; 24: 46
  • 81 Kou M, Huang L, Yang J. et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool. Cell Death Dis 2022; 13: 580
  • 82 Börger V, Bremer M, Ferrer-Tur R. et al. Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents. Int J Mol Sci 2017; 18
  • 83 Kordelas L, Rebmann V, Ludwig AK. et al. MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 2014; 28: 970-973
  • 84 Van Delen M, Derdelinckx J, Wouters K. et al. A systematic review and meta-analysis of clinical trials assessing safety and efficacy of human extracellular vesicle-based therapy. Journal of Extracellular Vesicles 2024; 13: e12458
  • 85 Nassar W, El-Ansary M, Sabry D. et al. Umbilical cord mesenchymal stem cells derived extracellular vesicles can safely ameliorate the progression of chronic kidney diseases. Biomater Res 2016; 20: 21
  • 86 Warnecke A, Prenzler N, Harre J. et al. First-in-human intracochlear application of human stromal cell-derived extracellular vesicles. J Extracell Vesicles 2021; 10: e12094
  • 87 Sengupta V, Sengupta S, Lazo A. et al. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells as Treatment for Severe COVID-19. Stem Cells Dev 2020; 29: 747-754
  • 88 Chu M, Wang H, Bian L. et al. Nebulization Therapy with Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Pneumonia. Stem Cell Rev Rep 2022; 18: 2152-2163
  • 89 Zamanian MH, Norooznezhad AH, Hosseinkhani Z. et al. Human placental mesenchymal stromal cell-derived small extracellular vesicles as a treatment for severe COVID-19: A double-blind randomized controlled clinical trial. J Extracell Vesicles 2024; 13: e12492
  • 90 Nazari H, Alborzi F, Heirani-Tabasi A. et al. Evaluating the safety and efficacy of mesenchymal stem cell-derived exosomes for treatment of refractory perianal fistula in IBD patients: clinical trial phase I. Gastroenterol Rep (Oxf) 2022; 10: goac075
  • 91 Pak H, Hadizadeh A, Heirani-Tabasi A. et al. Safety and efficacy of injection of human placenta mesenchymal stem cells derived exosomes for treatment of complex perianal fistula in non-Crohn's cases: Clinical trial phase I. J Gastroenterol Hepatol 2023; 38: 539-547
  • 92 Ye C, Zhang Y, Su Z. et al. hMSC exosomes as a novel treatment for female sensitive skin: An in vivo study. Front Bioeng Biotechnol 2022; 10: 1053679
  • 93 Zarrabi M, Shahrbaf MA, Nouri M. et al. Allogenic mesenchymal stromal cells and their extracellular vesicles in COVID-19 induced ARDS: a randomized controlled trial. Stem Cell Res Ther 2023; 14: 169
  • 94 Lightner AL, Sengupta V, Qian S. et al Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicle Infusion for the Treatment of Respiratory Failure From COVID-19: A Randomized, Placebo-Controlled Dosing Clinical Trial. Chest 2023; 10.1016/j.chest.2023.06.024
  • 95 Kwon HH, Yang SH, Lee J. et al. Combination Treatment with Human Adipose Tissue Stem Cell-derived Exosomes and Fractional CO2 Laser for Acne Scars: A 12-week Prospective, Double-blind, Randomized, Split-face Study. Acta Derm Venereol 2020; 100: adv00310
  • 96 Muller-Ladner U. Basic immunology for routine clinical practice. Internist (Berl) 2022; 63: 493-503
  • 97 Sugimoto MA, Sousa LP, Pinho V. et al. Resolution of Inflammation: What Controls Its Onset. Frontiers in Immunology 2016; 7
  • 98 Kalogeris T, Baines CP, Krenz M. et al. Ischemia/Reperfusion. Compr Physiol 2016; 7: 113-170
  • 99 Doeppner TR, Bahr M, Hermann DM. et al. Concise Review: Extracellular Vesicles Overcoming Limitations of Cell Therapies in Ischemic Stroke. Stem Cells Transl Med 2017; 6: 2044-2052
  • 100 Eltzschig HK, Sitkovsky MV, Robson SC. Purinergic signaling during inflammation. N Engl J Med 2012; 367: 2322-2333
  • 101 Idzko M, Ferrari D, Eltzschig HK. Nucleotide signalling during inflammation. Nature 2014; 509: 310-317
  • 102 Bauer FN, Tertel T, Stambouli O. et al. CD73 activity of mesenchymal stromal cell-derived extracellular vesicle preparations is detergent-resistant and does not correlate with immunomodulatory capabilities. Cytotherapy 2023; 25: 138-147
  • 103 Teo KYW, Zhang S, Loh JT. et al. Mesenchymal Stromal Cell Exosomes Mediate M2-like Macrophage Polarization through CD73/Ecto-5'-Nucleotidase Activity. Pharmaceutics 2023; 15
  • 104 Zhang S, Chuah SJ, Lai RC. et al. MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 2018; 156: 16-27
  • 105 Zhang B, Lai RC, Sim WK. et al. Topical Application of Mesenchymal Stem Cell Exosomes Alleviates the Imiquimod Induced Psoriasis-Like Inflammation. Int J Mol Sci 2021; 22
  • 106 Gregorius J, Wang C, Stambouli O. et al. Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice. Basic Res Cardiol 2021; 116: 40
  • 107 Zhang B, Yin Y, Lai RC. et al. Mesenchymal stem cells secrete immunologically active exosomes. Stem Cells Dev 2014; 23: 1233-1244
  • 108 Gimona M, Brizzi MF, Choo ABH. et al. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2021; 23: 373-380
  • 109 Papait A, Silini AR, Gazouli M. et al. Perinatal derivatives: How to best validate their immunomodulatory functions. Front Bioeng Biotechnol 2022; 10: 981061
  • 110 Van Hoecke L, Van Cauwenberghe C, Borger V. et al. Anti-Inflammatory Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve Pathology in Niemann-Pick Type C Disease. Biomedicines 2021; 9: 1864
  • 111 Bremer M, Nardi Bauer F, Tertel T. et al. Qualification of a multidonor mixed lymphocyte reaction assay for the functional characterization of immunomodulatory extracellular vesicles. Cytotherapy 2023; 25: 847-857
  • 112 Madel RJ, Borger V, Dittrich R. et al. Independent human mesenchymal stromal cell-derived extracellular vesicle preparations differentially attenuate symptoms in an advanced murine graft-versus-host disease model. Cytotherapy 2023; 25: 821-836
  • 113 Tertel T, Dittrich R, Arsene P. et al. EV products obtained from iPSC-derived MSCs show batch-to-batch variations in their ability to modulate allogeneic immune responses in vitro. Front Cell Dev Biol 2023; 11: 1282860
  • 114 Selich A, Daudert J, Hass R. et al. Massive Clonal Selection and Transiently Contributing Clones During Expansion of Mesenchymal Stem Cell Cultures Revealed by Lentiviral RGB-Barcode Technology. Stem Cells Transl Med 2016; 5: 591-601
  • 115 Tencerova M, Lundby L, Buntzen S. et al. Molecular differences of adipose-derived mesenchymal stem cells between non-responders and responders in treatment of transphincteric perianal fistulas. Stem Cell Res Ther 2021; 12: 586
  • 116 Staubach S, Bauer FN, Tertel T. et al. Scaled preparation of extracellular vesicles from conditioned media. Adv Drug Deliv Rev 2021; 177: 113940
  • 117 Hermann DM, Peruzzotti-Jametti L, Giebel B. et al. Extracellular vesicles set the stage for brain plasticity and recovery by multimodal signalling. Brain 2024; 147: 372-389