Subscribe to RSS
DOI: 10.1055/a-2144-1007
Geschlechterunterschiede in der kieferorthopädischen Zahnbewegung
Gender Differences in Orthodontic Tooth MovementZusammenfassung
Die Kieferorthopädie ist ein dynamischer Prozess, der die präzise Anwendung von Kräften zur Erzielung gewünschter Veränderungen im Gebiss und Kiefer umfasst. Während verschiedene Faktoren die Wirksamkeit und Stabilität kieferorthopädischer Behandlungen beeinflussen, legen neuere Forschungsergebnisse nahe, dass das Geschlecht eine bedeutende Rolle in Geschwindigkeit und Muster der Zahnbewegung spielen kann.
Dieser Artikel hat zum Ziel, eine umfassende Übersicht über die vorhandene Literatur zu Geschlechterunterschieden in der Kieferorthopädie zu geben und potenzielle Auswirkungen auf die Behandlungsplanung und -ergebnisse aufzuzeigen.
Auch wenn weitere Forschung erforderlich ist, um die genauen Mechanismen hinter den geschlechtsspezifischen Unterschieden in der kieferorthopädischen Zahnbewegung zu verstehen, bietet die Berücksichtigung dieser bisher bekannten Unterschiede die Möglichkeit eine personalisierte und effektive kieferorthopädische Versorgung zu gewährleisten.
Ein in vivo Experiment an Mäusen, soll bestehende Literatur bestätigen.
Abstract
Orthodontics is a dynamic process that involves the precise application of forces to achieve desired changes in the dentition and jaws. While several factors influence the effectiveness and stability of orthodontic treatments, recent research suggests that gender may play a significant role in the speed and pattern of tooth movement.
This article aims to provide a comprehensive review of the existing literature on gender differences in orthodontics and to highlight potential implications for treatment planning and outcomes.
While further research is necessary to understand the precise mechanisms underlying gender-specific differences in orthodontic tooth movement, considering the already known differences provides the opportunity to ensure personalized and effective orthodontic care.
Additionally, an in vivo experiment in mice aims to confirm existing literature.
Schlüsselwörter
Gender - Geschlechtsunterschiede - Kieferorthopädie - Zahnbewegung - Tierversuch - MäusePublication History
Article published online:
05 October 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Krishnan V, Davidovitch Z. The effect of drugs on orthodontic tooth movement: Drugs and orthodontic treatment. Orthodontics & Craniofacial Research 2006; 9: 163-171
- 2 Hooijmans CR, Rovers MM, De Vries RB. et al. SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 2014; 14: 43
- 3 Kilkenny C, Browne WJ, Cuthill IC. et al. Improving Bioscience Research Reporting: The ARRIVE Guidelines for Reporting Animal Research. PLoS Biol 2010; 8: e1000412
- 4 Krishnan V, Kuijpers-Jagtman AM, Davidovitch Z. Hrsg. Biological mechanisms of tooth movement. Third edition. Hoboken, NJ: Wiley-Blackwell; 2021
- 5 Wichelhaus A. Hrsg. Kieferorthopädie – Therapie Band 1. Stuttgart: Georg Thieme Verlag; 2012
- 6 Panda M, Shankar T, Raut A. et al. Cone beam computerized tomography evaluation of incisive canal and anterior maxillary bone thickness for placement of immediate implants. J Indian Prosthodont Soc 2018; 18: 356
- 7 Yodthong N, Charoemratrote C, Leethanakul C. Factors related to alveolar bone thickness during upper incisor retraction. The Angle Orthodontist 2013; 83: 394-401
- 8 Uner DD, Izol BS, Gorus Z. Correlation between buccal and alveolar bone widths at the central incisors according to cone-beam-computed tomography. Niger J Clin Pract 2019; 22: 79-84
- 9 Deguchi T, Takano-Yamamoto T, Yabuuchi T. et al. Histomorphometric evaluation of alveolar bone turnover between the maxilla and the mandible during experimental tooth movement in dogs. American Journal of Orthodontics and Dentofacial Orthopedics 2008; 133: 889-897
- 10 Zittermann A, Schwarz I, Scheld K. et al. Physiologic Fluctuations of Serum Estradiol Levels Influence Biochemical Markers of Bone Resorption in Young Women. The Journal of Clinical Endocrinology & Metabolism 2000; 85: 95-101
- 11 Deng L, Guo Y. Estrogen effects on orthodontic tooth movement and orthodontically-induced root resorption. Archives of Oral Biology 2020; 118: 104840
- 12 Yamashiro T, Takano-Yamamoto T. Influences of Ovariectomy on Experimental Tooth Movement in the Rat. J Dent Res 2001; 80: 1858-1861
- 13 Sirisoontorn I, Hotokezaka H, Hashimoto M. et al. Tooth movement and root resorption; The effect of ovariectomy on orthodontic force application in rats. The Angle Orthodontist 2011; 81: 570-577
- 14 Macari S, Duffles LF, Queiroz-Junior CM. et al. Oestrogen regulates bone resorption and cytokine production in the maxillae of female mice. Archives of Oral Biology 2015; 60: 333-341
- 15 Mohammed AO, Kaklamanos EG. Effect of ovariectomy-induced osteoporosis on the amount of orthodontic tooth movement: a systematic review of animal studies. European Journal of Orthodontics 2021; 43: 672-681
- 16 Amaro ERS, Ortiz FR, Dorneles LS. et al. Estrogen protects dental roots from orthodontic-induced inflammatory resorption. Archives of Oral Biology 2020; 117: 104820
- 18 Graham JD, Clarke CL. Physiological Action of Progesterone in Target Tissues*. Endocrine Reviews 1997; 18: 502-519
- 18 Poosti M, Basafa M, Eslami N. Progesterone effects on experimental tooth movement in rabbits. J Calif Dent Assoc 2009; 37: 483-486
- 19 MacNamara P, O’Shaughnessy C, Manduca P. et al. Progesterone receptors are expressed in human osteoblast-like cell lines and in primary human osteoblast cultures. Calcif Tissue Int 1995; 57: 436-441
- 20 Mills EG, Yang L, Nielsen MF. et al. The Relationship Between Bone and Reproductive Hormones Beyond Estrogens and Androgens. Endocrine Reviews 2021; 42: 691-719
- 21 Almidfa NSS, Athanasiou AE, Makrygiannakis MA. et al. Does the rate of orthodontic tooth movement change during the estrus cycle? A systematic review based on animal studies. BMC Oral Health 2021; 21: 526
- 22 Mariotti A. Sex Steroid Hormones and Cell Dynamics in the Periodontium. Critical Reviews in Oral Biology & Medicine 1994; 5: 27-53
- 23 Hellsing E, Hammarstrom L. The effects of pregnancy and fluoride on orthodontic tooth movements in rats. The European Journal of Orthodontics 1991; 13: 223-230
- 24 Largo RH, Gasser T, Prader A. et al. Analysis of the adolescent growth spurt using smoothing spline functions. Annals of Human Biology 1978; 5: 421-434
- 25 Preece MA, Baines MJ. A new family of mathematical models describing the human growth curve. Annals of Human Biology 1978; 5: 1-24
- 26 Harris EF. Effects of patient age and sex on treatment: correction of Class II malocclusion with the Begg technique. Angle Orthod 2001; 71: 433-441
- 27 Moreno-Gomez F. Sexual Dimorphism in Human Teeth from Dental Morphology and Dimensions: A Dental Anthropology Viewpoint. In: Moriyama H, Hrsg. Sexual Dimorphism. InTech; 2013
- 28 Chisari JR, McGorray SP, Nair M. et al. Variables affecting orthodontic tooth movement with clear aligners. American Journal of Orthodontics and Dentofacial Orthopedics 2014; 145: S82-S91
- 29 Wolf M, Ao M, Chavez MB. et al. Reduced Orthodontic Tooth Movement in Enpp1 Mutant Mice with Hypercementosis. J Dent Res 2018; 97: 937-945
- 30 Shoji-Matsunaga A, Ono T, Hayashi M. et al. Osteocyte regulation of orthodontic force-mediated tooth movement via RANKL expression. Sci Rep 2017; 7: 8753
- 31 Xu X, Zhao Q, Yang S. et al. A new approach to accelerate orthodontic tooth movement in women: Orthodontic force application after ovulation. Medical Hypotheses 2010; 75: 405-407