Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2023; 55(18): 3026-3032
DOI: 10.1055/a-2147-2863
DOI: 10.1055/a-2147-2863
paper
Special Issue Electrochemical Organic Synthesis
Electrochemical Decarboxylative Minisci-Type Acylation of Quinoxalines under Catalyst- and External-Oxidant-Free Conditions
We are grateful to the National Natural Science Foundation of China (22271009), Beijing Natural Science Foundation (2222003), and Beijing Municipal Education Committee Project (KZ202110005003, KM202110005006), and the funding from the Open Project Program of Beijing Key Laboratory of Flavor Chemistry, Beijing Technology and Business University (SPFW2021ZD01).
Abstract
An electrochemical approach for the Minisci-type acylation of quinoxalines with α-keto acids as the acyl radical precursors is reported. With the assistance of TFA as the key additive, acylated quinoxalines were constructed in synthetically useful yields. The distinguishable features of this electrochemical protocol include catalyst- and external oxidant-free conditions, and operational simplicity.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2147-2863.
- Supporting Information
Publication History
Received: 25 June 2023
Accepted after revision: 02 August 2023
Accepted Manuscript online:
02 August 2023
Article published online:
17 August 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Minisci F. Synthesis 1973; 1
- 1b Tauber J, Imbri D, Opatz T. Molecules 2014; 19: 16190
- 1c Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
- 1d Meng W, Xu K, Guo B, Zeng C. Chin. J. Org. Chem. 2021; 41: 2621 ; and references cited therein
- 2 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
- 3a Penteado F, Lopes EF, Alves D, Perin G, Jacob RG, Lenardão EJ. Chem. Rev. 2019; 119: 7113
- 3b Li J, Zhang S, Xu K. Chin. Chem. Lett. 2021; 32: 2729
- 4a Siddaraju Y, Lamani M, Prabhu KR. J. Org. Chem. 2014; 79: 3856
- 4b Laha JK, Hunjan MK, Hegde S, Gupta A. Org. Lett. 2020; 22: 1442
- 5a Hafeez S, Saeed A. RSC Adv. 2021; 11: 38683
- 5b Roy VJ, Sen P, Roy SR. Chem. Commun. 2022; 58: 1776
- 6a Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 6b Hilt G. ChemElectroChem 2020; 7: 395
- 6c Novaes LF. T, Liu J, Shen Y, Lu L, Meinhardt JM, Lin S. Chem. Soc. Rev. 2021; 50: 7941
- 6d Zhu C, Ang NW. J, Meyer T, Qiu Y, Ackermann L. ACS Cent. Sci. 2021; 7: 415
- 6e Cheng X, Lei A, Mei T, Xu H, Xu K, Zeng C. CCS Chem. 2022; 4: 1120
- 6f Klein M, Waldvogel SR. Angew. Chem. Int. Ed. 2022; 61: e202204140
- 6g Tay NE. S, Lehnherr D, Rovis T. Chem. Rev. 2022; 122: 2487
- 6h Mahanty K, Halder A, Maiti D, Sarkar SD. Synthesis 2023; 55: 400
- 6i Wan Q, Zhang Z, Hou Z, Wang L. Org. Chem. Front. 2023; 10: 2830
- 7a Liu D, Liu Z, Wang Z, Ma C, Herbert S, Schirok H, Mei T. Nat. Commun. 2022; 13: 7318
- 7b Fu Z, Ye J, Huang J. Org. Lett. 2022; 24: 5874
- 7c Lian F, Xu K, Zeng C. Sci. Chin. Chem. 2023; 66: 540
- 7d He T, Liang C, Huang S. Chem. Sci. 2023; 14: 143
- 7e Lian F, Luo F, Wang M, Xu K, Zeng C. Chin. J. Chem. 2023; 41: 1583
- 7f Luan S, Castanheiro T, Poisson T. Org. Lett. 2023; 25: 1678
- 7g Zou L, Wang X, Xiang S, Zheng W, Lu QQ. Angew. Chem. Int. Ed. 2023; 62: e202301026
- 7h Gausmann M, Kredit N, Christmann M. Org. Lett. 2023; 25: 2228
- 7i Wan Q, Hou Z, Zhao X, Xie X, Wang L. Org. Lett. 2023; 25: 1008
- 7j Lv Y, Hou Z, Li P, Wang L. Org. Chem. Front. 2023; 10: 990
- 7k Arepally S, Kim T, Kim G, Yang H, Park JK. Angew. Chem. Int. Ed. 2023; 62: e202303460
- 8a Wang Q, Xu K, Jiang Y, Liu Y, Sun B, Zeng C. Org. Lett. 2017; 19: 5517
- 8b Ding H, Xu K, Zeng C. J. Catal. 2020; 381: 38
- 9a Xu P, Chen P, Xu H. Angew. Chem. Int. Ed. 2020; 59: 14275
- 9b Capaldo L, Quadri LL, Merli D, Ravelli D. Chem. Commun. 2021; 57: 4424
- 9c Tan Z, He XR, Xu K, Zeng C. ChemSusChem 2022; 15: e202102360
- 9d Li H, Tong J, Zhu Y, Jiang C, Liu P, Sun P. Green Chem. 2022; 24: 8406
- 9e Del Rio-Rodriguez R, Fragoso-Jarillo L, Garrido-Castro AF, Maestro MC, Fernandez-Salas JA, Aleman J. Chem. Sci. 2022; 13: 6512 ; and references cited therein
- 10 For a recent review on the electrochemical generation of acyl radicals, see: Zhang H, Liang S, Wei D, Xu K, Zeng C. Eur. J. Org. Chem. 2022; e202200794
- 11 Chen M, Sun N, Xu W, Zhao J, Wang G, Liu Y. Chem. Eur. J. 2015; 21: 18571
- 12 Ali W, Behera A, Guin S, Patel BK. J. Org. Chem. 2015; 80: 5625
- 13 Sharma R, Abdullaha M, Bharate SB. J. Org. Chem. 2017; 82: 9786
For selected reviews on Minisci-type reactions, see:
Minisci-type acylation reactions under thermal conditions, see:
Minisci-type acylation reactions under photocatalytic conditions, see:
For recent examples on electrochemical Minisci-type alkylation reactions, see: