RSS-Feed abonnieren
DOI: 10.1055/a-2158-8648
Visible-Light-Induced Oxidative Generation of o-Quinone Methides for Inverse-Electron-Demand [4+2] Cycloaddition Reactions
This work was supported by the Tokuyama Science Foundation, the Takahashi Industrial and Economic Research Foundation, the Research Foundation for the Electrotechnology of Chubu, the Futaba Electronics Memorial Foundation, the Yashima Environment Technology Foundation, the Naohiko Fukuoka Memorial Foundation, the Japan Society for Bioscience, Biotechnology, and Agrochemistry, the Society of Iodine Science, the Japan Society for the Promotion of Science (JSPS KAKENHI, Grant JP 20K22537), and the Nakatsuji Fore-sight Foundation Research Grant. Funding for this research was also provided by Yokohama National University (kyodo kenkyu suishin program B).

Abstract
Organophotoredox-catalyzed oxidative generation of o-quinone methides (o-QMs) for inverse-electron-demand [4+2] cycloaddition reactions has been developed. One-electron oxidation of 2-(sulfanylmethyl)phenols by thioxanthylium photoredox catalyst generated o-QMs, which reacted with various styrenes to produce chromanes with high regioselectivity. This reaction offers a valuable approach for in situ generating o-QMs via one-electron oxidation process under irradiation with mild green light.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-2158-8648.
- Supporting Information
Publikationsverlauf
Eingereicht: 20. Juni 2023
Angenommen nach Revision: 22. August 2023
Accepted Manuscript online:
22. August 2023
Artikel online veröffentlicht:
09. Oktober 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Bai W.-J, David JG, Feng Z.-G, Weaver MG, Wu K.-L, Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
- 1b Sharma A, Hazarika H, Gogoi P. J. Org. Chem. 2021; 86: 4883
- 1c Barta P, Fülöp F, Szatmári I. Beilstein J. Org. Chem. 2018; 14: 560
- 1d Singh MS, Nagaraju A, Anand N, Chowdhury S. RSC Adv. 2014; 4: 55924
- 2a Inoue T, Inoue S, Sato K. Chem. Lett. 1989; 18: 653
- 2b Chiba K, Sonoyama J, Tada M. J. Chem. Soc., Chem. Commun. 1995; 1381
- 2c Chiba K, Sonoyama J, Tada M. J. Chem. Soc., Perkin Trans. 1 1996; 1435
- 2d Chiba K, Yamaguchi Y, Tada M. Tetrahedron Lett. 1998; 39: 9035
- 2e Chiba K, Hirano T, Kitano Y, Tada M. Chem. Commun. 1999; 691
- 2f Uyanik M, Nishioka K, Kondo R, Ishihara K. Nat. Chem. 2020; 12: 353
- 3a Le T, Galmiche L, Masson G, Allaina C, Audebert P. Chem. Commun. 2020; 56: 10742
- 3b Lyu J, Claraz A, Retailleau P, Masson G. Org. Biomol. Chem. 2022; 20: 9593
- 4a Arumugam S, Popik VV. J. Am. Chem. Soc. 2011; 133: 5573
- 4b Fujiwara M, Sakamoto M, Komeyama K, Yoshida H, Takaki K. J. Heterocycl. Chem. 2015; 52: 59
- 4c Nakatani K, Higashida N, Saito I. Tetrahedron Lett. 1997; 38: 5005
- 4d Škalamera Đ, Mlinarić-Majerski K, Martin-Kleiner I, Kralj M, Wan P, Basarić N. J. Org. Chem. 2014; 79: 4390
- 5 Zhou F, Cheng Y, Liu X.-P, Chen J.-R, Xiao W.-J. Chem. Commun. 2019; 55: 3117
- 6a Tanaka K, Ueno K, Tanaka Y, Ohtsuka N, Asada Y, Kishimoto M, Sunaga S, Hoshino Y, Honda K. Synlett 2020; 31: 1197
- 6b Tanaka K, Kishimoto M, Asada Y, Hoshino Y, Honda K. J. Org. Chem. 2019; 84: 13858
- 6c Tanaka K, Kishimoto M, Ohtsuka N, Iwama Y, Wada H, Hoshino Y, Honda K. Synlett 2019; 30: 189
- 6d Tanaka K, Hoshino Y, Honda K. J. Synth. Org. Chem. Jpn. 2018; 76: 1341
- 6e Tanaka K, Kishimoto M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 1841
- 6f Tanaka K, Sukekawa M, Shigematsu Y, Hoshino Y, Honda K. Tetrahedron 2017; 73: 6456
- 6g Tanaka K, Hoshino Y, Honda K. Heterocycles 2017; 95: 474
- 6h Tanaka K, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 2448
- 6i Tanaka K, Shigematsu Y, Sukekawa M, Hoshino Y, Honda K. Tetrahedron Lett. 2016; 57: 5914
- 6j Tanaka K, Sukekawa M, Hoshino Y, Honda K. Chem. Lett. 2018; 47: 440
- 6k Tanaka K, Sukekawa M, Kishimoto M, Hoshino Y, Honda K. Heterocycles 2019; 99: 145
- 7a Tanaka K, Asada Y, Hoshino Y. Chem. Commun. 2022; 58: 2476
- 7b Tanaka K, Kishimoto M, Tanaka Y, Kamiyama Y, Asada Y, Sukekawa M, Ohtsuka N, Suzuki T, Momiyama N, Honda K, Hoshino Y. J. Org. Chem. 2022; 87: 3319
- 7c Tanaka K, Iwama Y, Kishimoto M, Ohtsuka N, Hoshino Y, Honda K. Org. Lett. 2020; 22: 5207
- 7d Tanaka K, Asada Y, Hoshino Y, Honda K. Org. Biomol. Chem. 2020; 18: 8074
- 7e Tanaka K, Hoshino Y, Honda K. J. Jpn. Soc. Colour Mater. 2020; 93: 49
- 7f Tanaka K, Omata D, Asada Y, Hoshino Y, Honda K. J. Org. Chem. 2019; 84: 10669
- 7g Tanaka K, Tanaka Y, Kishimoto M, Hoshino Y, Honda K. Beilstein J. Org. Chem. 2019; 15: 2105
- 7h Tanaka K, Sukekawa M, Kishimoto M, Hoshino Y, Honda K. Tetrahedron Lett. 2018; 59: 3361
- 8a Selenski C, Pettus TR. R. J. Org. Chem. 2004; 69: 9196
- 8b Jones RM, Selenski C, Pettus TR. R. J. Org. Chem. 2002; 67: 6911
- 8c Marsini MA, Huang Y, Lindsey CC, Wu K.-L, Pettus TR. R. Org. Lett. 2008; 10: 1477
- 9 Since it was difficult to separate the diastereomers in our system, the diastereomeric ratio of 3 was determined by 1H NMR analysis comparing the benzylic peaks at the C2 position of chroman. Each of the diastereomers of 3a was confirmed by comparison with the spectral data described in the literature, see: Pagar VV, Tseng C.-C, Liu R.-S. Chem. Eur. J. 2014; 20: 10519
- 10 Yamaguchi T, Sugiura Y, Yamaguchi E, Tada N, Ito A. Asian J. Org. Chem. 2017; 6: 432
- 11 2,4-Diphenylchoroman (3a): Typical Procedure 2-(Sulfanylmethyl)phenol (1a, 58.3 mg, 0.20 mmol), styrene (2a, 62.5 mg, 0.60 mmol), TXT (5.0 mg, 9.0 μmol, 5.0 mol%), DCE (2.0 mL), and TFE (2.0 mL) were added into an 8 mL borosilicate vial. The resulting solution was stirred at room temperature under air and green LED irradiation for 24 h. The desired cycloadduct 3a was isolated by column chromatography on silica gel (hexane/ethyl acetate = 50:1). (2S*,4R*)- and (2R*,4R*)-2,4-Diphenylchromane (3a) White solid (42.4 mg, 74% yield). 1H NMR (500 MHz, CDCl3): δ = 7.52–7.48 (m, 2 H) (major), 7.42–7.38 (m, 2 H) (mixture), 7.37–7.29 (m, 8 H) (mixture), 7.29–7.19 (m, 6 H) (mixture), 7.17–7.12 (m, 2 H) (mixture), 7.02 (ddd, J = 14.1, 7.9, 1.5 Hz, 2 H) (minor), 6.97–6.95 (m, 1 H) (major), 6.90 (td, J = 7.4, 1.1 Hz, 1 H) (minor), 6.83–6.76 (m, 2 H) (major), 5.23 (dd, J = 11.2, 2.1 Hz, 1 H) (major), 5.05 (dd, J = 10.5, 2.3 Hz, 1 H) (minor), 4.37 (q, J = 6.1 Hz, 1 H) (major), 4.25 (q, J = 2.9 Hz, 1 H) (mixture), 2.51–2.46 (m, 1 H) (minor), 2.42 (ddd, J = 13.7, 5.7, 2.1 Hz, 1 H) (major), 2.33–2.24 (m, 1 H) (major). 13C{1H} NMR (126 MHz, CDCl3) (mixture): δ = 155.5, 155.4, 146.0, 144.5, 141.4, 141.2, 130.8, 129.8, 128.6, 128.6, 128.4, 128.1, 128.0, 127.7, 126.8, 126.4, 126.1, 126.0, 125.7, 123.1, 120.6, 120.5, 117.0, 117.0, 78.1, 73.2, 43.5, 40.6, 40.2, 38.3.
- 12 Lyu J, Claraz A, Vitale MR, Allain C, Masson G. J. Org. Chem. 2020; 85: 12843
- 13 See the Supporting Information.