Synthesis 2023; 55(24): 4103-4112
DOI: 10.1055/a-2160-8903
paper

Visible-Light-Mediated Oxidation of 1-Benzyl-3,4-dihydroisoquinolines with Dioxygen: A Switchable Synthesis of 1-Benzoylisoquinolines and 1-Benzoyl-3,4-dihydroisoquinolines

Peipei Ma
,
Hongli Wu
,
Haifeng Gan
This work was supported by the National Key Research and Development Program of China (2019YFC1906603), the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture (XTC1806), the National Natural Science Foundation of China (22078152), and the Six Talent Peaks Project in Jiangsu Province (SWYY-030/SWYY-118).


Abstract

A visible-light-mediated metal-free oxidation of 1-benzyl-3,4-dihydroisoquinolines (1-BnDHIQs) for the switchable preparation of a wide range of 1-benzoylisoquinolines (BzIQs) and 1-benzoyl-3,4-dihydroisoquinolines (BzDHIQs) is realized using dioxygen as the oxidant. This protocol provides a facile route for the efficient synthesis of isoquinoline alkaloids. Mechanistic investigations suggest that a radical pathway and an ionic pathway may exist simultaneously, with both pathways proceeding via a common key peroxide intermediate to give the oxidized products.

Supporting Information



Publication History

Received: 10 July 2023

Accepted after revision: 25 August 2023

Accepted Manuscript online:
25 August 2023

Article published online:
04 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pingaew R, Prachayasittikul S, Ruchirawat S. Molecules 2010; 15: 988
    • 1b Nevskaya AA, Miftyakhova AR, Anikina LV, Borisova TN, Varlamov AV, Voskressensky LG. Tetrahedron Lett. 2021; 62: 153552
    • 1c Astakhov GS, Shigaev RR, Borisova TN, Ershova AA, Titov AA, Varlamov AV, Voskressensky LG, Matveeva MD. Mol. Diversity 2021; 25: 2441
    • 1d Miftyakhova AR, Sidakov MB, Borisova TN, Ilyushenkova VV, Fakhrutdinov AN, Sorokina EA, Varlamov AV, Voskressensky LG. Tetrahedron Lett. 2022; 63: 153991
    • 2a Cheng HY, Doskotch RW. J. Nat. Prod. 1980; 43: 151
    • 2b Chen C, Zhu Y.-F, Liu X.-J, Lu Z.-X, Xie Q, Ling N. J. Med. Chem. 2001; 44: 4001
    • 2c Reux B, Nevalainen T, Raitio KH, Koskinen AM. P. Bioorg. Med. Chem. 2009; 17: 4441
    • 2d Costa EV, Pinheiro ML. B, Barison A, Campos FR, Salvador MJ, Maia BH. L. N. S, Cabral EC, Eberlin MN. J. Nat. Prod. 2010; 73: 1180
    • 2e Trieu TH, Dong J, Zhang Q, Zheng B, Meng T.-Z, Lu X, Shi X.-X. Eur. J. Org. Chem. 2013; 3271
    • 2f Nishimoto S, Nakahashi H, Toyota M. Tetrahedron Lett. 2020; 61: 152599
    • 3a Oger J.-M, Fardeau A, Richomme P, Guinaudeau H, Fournet A. Can. J. Chem. 1993; 71: 1128
    • 3b Salim AA, Bidin N, Lafi AS, Huyop FZ. Mater. Des. 2017; 132: 486
    • 3c Yogendra KN, Dhokane D, Kushalappa AC, Sarmiento F, Rodriguez E, Mosquera T. Plant Sci. 2017; 256: 208
    • 3d Zheng B, Qu H.-Y, Meng T.-Z, Lu X, Zheng J, He Y.-G, Fan Q.-Q, Shi X.-X. RSC Adv. 2018; 8: 28997
    • 3e He Y.-G, Huang Y.-K, Fan Q.-Q, Zheng B, Luo Y.-Q, Zhu X.-L, Shi X.-X. RSC Adv. 2021; 11: 29702
    • 4a Matcha K, Antonchick AP. Angew. Chem. Int. Ed. 2013; 52: 2082
    • 4b Chen J, Wan M, Hua J, Sun Y, Lv Z, Li W, Liu L. Org. Biomol. Chem. 2015; 13: 11561
    • 4c Ali W, Behera A, Guin S, Patel BK. J. Org. Chem. 2015; 80: 5625
    • 4d Adib M, Pashazadeh R, Rajai-Daryasarei S, Kabiri R, Gohari SJ. A. Synlett 2016; 27: 2241
    • 4e Laha JK, Tinwala U, Hunjan MK. New J. Chem. 2021; 45: 22853
    • 4f Laha JK, Hunjana MK. Chem. Commun. 2021; 57: 8437
    • 5a Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 5b Chang R, Fang J, Chen JQ, Liu D, Xu G.-Q, Xu P.-F. ACS Omega 2019; 4: 14021
    • 5c Wan M, Lou H, Liu L. Chem. Commun. 2015; 51: 13953
    • 5d Sharma R, Abdullaha M, Bharate SB. J. Org. Chem. 2017; 82: 9786
    • 5e Li J.-l, Li W.-z, Wang Y.-c, Ren Q, Wang H.-s, Pan Y.-m. Chem. Commun. 2016; 52: 10028
    • 6a Yip BR. P, Pal KB, Lin JD, Xu Y, Das M, Lee J, Liu X.-W. Chem. Commun. 2021; 57: 10783
    • 6b Zhang X, Chen J, Gao Y, Li K, Zhou Y, Sun W, Fan B. Org. Chem. Front. 2019; 6: 2410
    • 6c Zhang Y, Riemer D, Schilling W, Kollmann J, Das S. ACS Catal. 2018; 8: 6659
    • 6d Nandi J, Vaughan MZ, Sandoval AL, Paolillo JM, Leadbeater NE. J. Org. Chem. 2020; 85: 9219
    • 7a Zhang L, Zhang G, Li Y, Wang S, Lei A. Chem. Commun. 2018; 54: 5744
    • 7b Roy VJ, Sen PP, Roy SR. Chem. Commun. 2022; 58: 1776
    • 7c Jia W, Jian Y, Huang B, Yang C, Xia W. Synlett 2018; 29: 1881
    • 7d Guillemard L, Colobert F, Wencel-Delord J. Adv. Synth. Catal. 2018; 360: 4184
    • 7e Hou C, Sun S, Liu Z, Zhang H, Liu Y, An Q, Zhao J, Ma J, Sun Z, Chu W. Adv. Synth. Catal. 2021; 363: 2806
    • 7f Manna S, Prabhu KR. J. Org. Chem. 2019; 84: 5067
    • 7g Zheng Z, Wu Y, Lu X, Zhang F.-L, Qi M.-F, Sun E, Sun B. Tetrahedron 2022; 112: 132749
    • 7h Zhong S, Deng G.-J, Dai Z, Huang H. Org. Chem. Front. 2021; 8: 4419
    • 7i Ni H, Li Y, Deng J, Shi X, Pan Q. New J. Chem. 2021; 45: 22432
    • 7j Ni H, Li Y, Shi X, Pang Y, Jin C, Zhao F. Tetrahedron Lett. 2021; 68: 152915
    • 7k Sultan S, Rizvi MA, Kumar J, Shah BA. Chem. Eur. J. 2018; 24: 10617
    • 7l Huang Y, Xie W, Luo Y, Fan Q, Zhu X, Liu S, Shi X. Chin. J. Org. Chem. 2020; 40: 1281
    • 8a Gan H, Lu Y, Huang Y, Ni L, Xu J, Yao H, Wu X. Tetrahedron Lett. 2011; 52: 1320
    • 8b Shankar R, More SS, Madhubabu MV, Vembu N, Kumar UK. S. Synlett 2012; 1013
  • 9 Wu WN, Huang CH. Chin. Pharm. J. 2006; 58: 41
  • 10 Feng W, Gan H, Huang Y, Guo K. Chin. J. Synth. Chem. 2015; 23: 736
    • 11a Romero N, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 11b Shen T, Zhao Z.-G, Yu Q, Xu H. J. Photochem. Photobiol. A 1989; 47: 203