Neuroradiologie Scan 2024; 14(01): 59-82
DOI: 10.1055/a-2165-1822
CME-Fortbildung

Bildgebende Darstellung intrakranieller Aneurysmen nach endovaskulärer Therapie

Charlotte Y. Chung
,
Ryan B. Peterson
,
Brian M. Howard
,
Brian M. Howard

Der vermehrte Einsatz und die verbesserte Qualität der Neurobildgebung haben dazu geführt, dass nicht rupturierte intrakranielle Aneurysmen präziser entdeckt werden können. Diese werden immer häufiger endovaskulär behandelt. Radiologen sollten daher mit der bildgebenden Darstellung gängiger Behandlungs-Devices und den bildgebenden Befunden nach der Therapie vertraut sein.



Publication History

Article published online:
05 January 2024

© 2024. The Radiological Society of North America. All rights reserved. Originally published in English in RadioGraphics 2022; 42 (3). Online published in 10.1148/rg.210131. Translated and reprinted with permission of RSNA. RSNA is not responsible for any inaccuracy or error arising from the translation from English to German.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Salem MM, Maragkos GA, Gomez-Paz S. et al. Trends of ruptured and unruptured aneurysms treatment in the United States in post-ISAT era: a national inpatient sample analysis. J Am Heart Assoc 2021; 10: e016998
  • 2 Howard BM, Hu R, Barrow JW. et al. Comprehensive review of imaging of intracranial aneurysms and angiographically negative subarachnoid hemorrhage. Neurosurg Focus 2019; 47: E20
  • 3 Spetzler RF, McDougall CG, Zabramski JM. et al. Ten-year analysis of saccular aneurysms in the Barrow Ruptured Aneurysm Trial. J Neurosurg 2019; 132: 771-776
  • 4 van Gijn J, Kerr RS, Rinkel GJ. Subarachnoid haemorrhage. Lancet 2007; 369: 306-318
  • 5 Greving JP, Wermer MJH, Brown Jr RD. et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol 2014; 13: 59-66
  • 6 Wiebers DO, Whisnant JP, Huston 3rd J. et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 2003; 362: 103-110
  • 7 Lindgren A, Vergouwen MD, van der Schaaf I. et al. Endovascular coiling versus neurosurgical clipping for people with aneurysmal subarachnoid haemorrhage. Cochrane Database Syst Rev 2018; 8: CD003085
  • 8 Molyneux AJ, Kerr RS, Yu LM. et al. International subarachnoid aneurysm trial (ISAT) of neurosurgical clipping versus endovascular coiling in 2143 patients with ruptured intracranial aneurysms: a randomised comparison of effects on survival, dependency, seizures, rebleeding, subgroups, and aneurysm occlusion. Lancet 2005; 366: 809-817
  • 9 Molyneux AJ, Birks J, Clarke A. et al. The durability of endovascular coiling versus neurosurgical clipping of ruptured cerebral aneurysms: 18 year follow-up of the UK cohort of the International Subarachnoid Aneurysm Trial (ISAT). Lancet 2015; 385: 691-697
  • 10 McDougall CG, Spetzler RF, Zabramski JM. et al. The Barrow Ruptured Aneurysm Trial. J Neurosurg 2012; 116: 135-144
  • 11 Khatri GD, Sarikaya B, Cross NM. et al. The role of imaging in the management of non-traumatic subarachnoid hemorrhage: a practical review. Emerg Radiol 2021; 28: 797-808
  • 12 Villablanca JP, Rodriguez FJ, Stockman T. et al. MDCT angiography for detection and quantification of small intracranial arteries: comparison with conventional catheter angiography. AJR Am J Roentgenol 2007; 188: 593-602
  • 13 Nelson SE, Sair HI, Stevens RD. Magnetic resonance imaging in aneurysmal subarachnoid hemorrhage: current evidence and future directions. Neurocrit Care 2018; 29: 241-252
  • 14 Kapsalaki EZ, Rountas CD, Fountas KN. The role of 3 tesla MRA in the detection of intracranial aneurysms. Int J Vasc Med 2012; 2012: 792834
  • 15 Boddu SR, Tong FC, Dehkharghani S. et al. Contrast-enhanced time-resolved MRA for follow-up of intracranial aneurysms treated with the pipeline embolization device. AJNR Am J Neuroradiol 2014; 35: 2112-2118
  • 16 Lv N, Karmonik C, Chen S. et al. Relationship between aneurysm wall enhancement in vessel wall magnetic resonance imaging and rupture risk of unruptured intracranial aneurysms. Neurosurgery 2019; 84: E385-E391
  • 17 Samaniego EA, Roa JA, Hasan D. Vessel wall imaging in intracranial aneurysms. J Neurointerv Surg 2019; 11: 1105-1112
  • 18 Hartman JB, Watase H, Sun J. et al. Intracranial aneurysms at higher clinical risk for rupture demonstrate increased wall enhancement and thinning on multicontrast 3D vessel wall MRI. Br J Radiol 2019; 92: 20180950
  • 19 Matsushige T, Shimonaga K, Ishii D. et al. Vessel wall imaging of evolving unruptured intracranial aneurysms. Stroke 2019; 50: 1891-1894
  • 20 Texakalidis P, Hilditch CA, Lehman V. et al. Vessel wall imaging of intracranial aneurysms: systematic review and meta-analysis. World Neurosurg 2018; 117: 453.e1-458.e1
  • 21 Santarosa C, Cord B, Koo A. et al. Vessel wall magnetic resonance imaging in intracranial aneurysms: principles and emerging clinical applications. Interv Neuroradiol 2020; 26: 135-146
  • 22 Meyers PM, Schumacher HC, Higashida RT. et al. Reporting standards for endovascular repair of saccular intracranial cerebral aneurysms. Stroke 2009; 40: e366-e379
  • 23 Tang G, Cawley CM, Dion JE. et al. Intraoperative angiography during aneurysm surgery: a prospective evaluation of efficacy. J Neurosurg 2002; 96: 993-999
  • 24 Kallmes DF, Hanel R, Lopes D. et al. International retrospective study of the pipeline embolization device: a multicenter aneurysm treatment study. AJNR Am J Neuroradiol 2015; 36: 108-115
  • 25 Mokin M, Chinea A, Primiani CT. et al. Treatment of blood blister aneurysms of the internal carotid artery with flow diversion. J Neurointerv Surg 2018; 10: 1074-1078
  • 26 Brinjikji W, Murad MH, Lanzino G. et al. Endovascular treatment of intracranial aneurysms with flow diverters: a meta-analysis. Stroke 2013; 44: 442-447
  • 27 Becske T, Brinjikji W, Potts MB. et al. Long-term clinical and angiographic outcomes following pipeline embolization device treatment of complex internal carotid artery aneurysms: five-year results of the Pipeline for Uncoilable or Failed Aneurysms Trial. Neurosurgery 2017; 80: 40-48
  • 28 Becske T, Kallmes DF, Saatci I. et al. Pipeline for uncoilable or failed aneurysms: results from a multicenter clinical trial. Radiology 2013; 267: 858-868
  • 29 Bonney PA, Connor M, Fujii T. et al. Failure of flow diverter therapy: predictors and management strategies. Neurosurgery 2020; 86 (Suppl. 01) S64-S73
  • 30 Goyal N, Hoit D, DiNitto J. et al. How to WEB: a practical review of methodology for the use of the Woven EndoBridge. J Neurointerv Surg 2020; 12: 512-520
  • 31 Zhang SM, Liu LX, Ren PW. et al. Effectiveness, safety and risk factors of Woven EndoBridge Device in the treatment of wide-neck intracranial aneurysms: systematic review and meta-analysis. World Neurosurg 2020; 136: e1-e23
  • 32 Fujimoto M, Lylyk I, Bleise C. et al. Long-term outcomes of the WEB Device for treatment of wide-neck bifurcation aneurysms. AJNR Am J Neuroradiol 2020; 41: 1031-1036
  • 33 Thompson BG, Brown Jr RD, Amin-Hanjani S. et al. Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association / American Stroke Association. Stroke 2015; 46: 2368-2400
  • 34 Al-Mufti F, Cohen ER, Amuluru K. et al. Bailout strategies and complications associated with the use of flow-diverting stents for treating intracranial aneurysms. Intervent Neurol 2020; 8: 38-54
  • 35 Kühn AL, Rodrigues KM, Wakhloo AK. et al. Endovascular techniques for achievement of better flow diverter wall apposition. Interv Neuroradiol 2019; 25: 344-347
  • 36 Ding D, Liu KC. Management strategies for intraprocedural coil migration during endovascular treatment of intracranial aneurysms. J Neurointerv Surg 2014; 6: 428-431
  • 37 Gao BL, Li MH, Wang YL. et al. Delayed coil migration from a small wide-necked aneurysm after stent-assisted embolization: case report and literature review. Neuroradiology 2006; 48: 333-337
  • 38 Maeda K, Motoie R, Karashima S. et al. A case of delayed distal coil migration after coil embolization of an unruptured distal azygos anterior cerebral artery aneurysm: a case report and literature review. Interv Neuroradiol 2018; 24: 643-649
  • 39 Phatouros CC, McConachie NS, Jaspan T. Post-procedure migration of Guglielmi detachable coils and mechanical detachable spirals. Neuroradiology 1999; 41: 324-327
  • 40 Domingo RA, Martinez Santos JL, Ravindran K. et al. we thank the ENRG Research Group. Management of thromboembolic complications during aneurysm coiling: 2-dimensional operative video. Oper Neurosurg (Hagerstown) 2021; 20: E348-E349
  • 41 Bendszus M, Koltzenburg M, Burger R. et al. Silent embolism in diagnostic cerebral angiography and neurointerventional procedures: a prospective study. Lancet 1999; 354: 1594-1597
  • 42 Tan LA, Keigher KM, Munich SA. et al. Thromboembolic complications with Pipeline Embolization Device placement: impact of procedure time, number of stents and pre-procedure P2Y12 reaction unit (PRU) value. J Neurointerv Surg 2015; 7: 217-221
  • 43 Davis MC, Deveikis JP, Harrigan MR. Clinical presentation, imaging, and management of complications due to neurointerventional procedures. Semin Intervent Radiol 2015; 32: 98-107
  • 44 Lessne ML, Shah P, Alexander MJ. et al. Thromboembolic complications after Neuroform stent-assisted treatment of cerebral aneurysms: the Duke Cerebrovascular Center experience in 235 patients with 274 stents. Neurosurgery 2011; 69: 369-375
  • 45 Matsukawa H, Kamiyama H, Miyazaki T. et al. Comprehensive analysis of perforator territory infarction on postoperative diffusion-weighted imaging in patients with surgically treated unruptured intracranial saccular aneurysms. J Neurosurg 2019; 132: 1088-1095
  • 46 Sluzewski M, Bosch JA, van Rooij WJ. et al. Rupture of intracranial aneurysms during treatment with Guglielmi detachable coils: incidence, outcome, and risk factors. J Neurosurg 2001; 94: 238-240
  • 47 Fleming JB, Hoh BL, Simon SD. et al. Rebleeding risk after treatment of ruptured intracranial aneurysms. J Neurosurg 2011; 114: 1778-1784
  • 48 Ihn YK, Shin SH, Baik SK. et al. Complications of endovascular treatment for intracranial aneurysms: management and prevention. Interv Neuroradiol 2018; 24: 237-245
  • 49 Kulcsár Z, Houdart E, Bonafé A. et al. Intra-aneurysmal thrombosis as a possible cause of delayed aneurysm rupture after flow-diversion treatment. AJNR Am J Neuroradiol 2011; 32: 20-25
  • 50 Hu YC, Deshmukh VR, Albuquerque FC. et al. Histopathological assessment of fatal ipsilateral intraparenchymal hemorrhages after the treatment of supraclinoid aneurysms with the Pipeline Embolization Device. J Neurosurg 2014; 120: 365-374
  • 51 Fealey ME, Edwards WD, Giannini C. et al. Complications of endovascular polymers associated with vascular introducer sheaths and metallic coils in 3 patients, with literature review. Am J Surg Pathol 2008; 32: 1310-1316
  • 52 Mehta RI, Mehta RI, Fishbein MC. et al. Intravascular polymer material after coil embolization of a giant cerebral aneurysm. Hum Pathol 2009; 40: 1803-1807
  • 53 Meyers PM, Lavine SD, Fitzsimmons BF. et al. Chemical meningitis after cerebral aneurysm treatment using two second-generation aneurysm coils: report of two cases. Neurosurgery 2004; 55: 1222
  • 54 Cloft HJ, Jensen ME, Kallmes DF. et al. Arterial dissections complicating cerebral angiography and cerebrovascular interventions. AJNR Am J Neuroradiol 2000; 21: 541-545
  • 55 Paramasivam S, Leesch W, Fifi J. et al. Iatrogenic dissection during neurointerventional procedures: a retrospective analysis. J Neurointerv Surg 2012; 4: 331-335
  • 56 Raymond J, Guilbert F, Weill A. et al. Long-term angiographic recurrences after selective endovascular treatment of aneurysms with detachable coils. Stroke 2003; 34: 1398-1403
  • 57 Mascitelli JR, Moyle H, Oermann EK. et al. An update to the Raymond-Roy Occlusion Classification of intracranial aneurysms treated with coil embolization. J Neurointerv Surg 2015; 7: 496-502
  • 58 Grunwald IQ, Kamran M, Corkill RA. et al. Simple measurement of aneurysm residual after treatment: the SMART scale for evaluation of intracranial aneurysms treated with flow diverters. Acta Neurochir (Wien) 2012; 154: 21-26 discussion 26
  • 59 Kamran M, Yarnold J, Grunwald IQ. et al. Assessment of angiographic outcomes after flow diversion treatment of intracranial aneurysms: a new grading schema. Neuroradiology 2011; 53: 501-508
  • 60 O’kelly CJ, Krings T, Fiorella D. et al. A novel grading scale for the angiographic assessment of intracranial aneurysms treated using flow diverting stents. Interv Neuroradiol 2010; 16: 133-137
  • 61 Darflinger R, Thompson LA, Zhang Z. et al. Recurrence, retreatment, and rebleed rates of coiled aneurysms with respect to the Raymond-Roy scale: a meta-analysis. J Neurointerv Surg 2016; 8: 507-511
  • 62 Kim SJ, Kim YJ, Ko JH. Long term outcome of in-stent stenosis after stent assisted coil embolization for cerebral aneurysm. J Korean Neurosurg Soc 2019; 62: 536-544
  • 63 Gao B, Safain MG, Malek AM. Enterprise stenting for intracranial aneurysm treatment induces dynamic and reversible age-dependent stenosis in cerebral arteries. J Neurointerv Surg 2015; 7: 297-302
  • 64 Mühl-Benninghaus R, Haußmann A, Simgen A. et al. Transient in-stent stenosis: a common finding after flow diverter implantation. J Neurointerv Surg 2019; 11: 196-199
  • 65 John S, Bain MD, Hui FK. et al. Long-term follow-up of in-stent stenosis after Pipeline Flow Diversion Treatment of intracranial aneurysms. Neurosurgery 2016; 78: 862-867
  • 66 Bender MT, Wendt H, Monarch T. et al. Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single institution study. Neurosurgery 2018; 83: 692-699
  • 67 Caroff J, Mihalea C, Neki H. et al. Role of C-arm VasoCT in the use of endovascular WEB flow disruption in intracranial aneurysm treatment. AJNR Am J Neuroradiol 2014; 35: 1353-1357
  • 68 Reyes D, Becerra V, Alcala I. et al. Usefulness of cone beam intra-arterial CTA for evaluation of flow diverters: a practical approach for daily use. Intervent Neurol 2018; 7: 457-463
  • 69 Lauric A, Heller RS, Schimansky S. et al. Benefit of cone-beam CT angiography in visualizing aneurysm shape and identification of exact rupture site. J Neuroimaging 2015; 25: 56-61