Subscribe to RSS
DOI: 10.1055/a-2172-1386
Recent Progress on the Zweifel Olefination: An Update
Financial support from the National Natural Science Foundation of China (2193103, 22271105) and the Natural Science Foundation of Fujian Province (2022J02009) are gratefully acknowledged.
Abstract
Over the past several decades, the Zweifel olefination has emerged as one of the most powerful and reliable tools for constructing C–C double bonds. This reaction features high efficiency, good versatility, avoids the use of transition metals, and typically affords perfect stereospecificity, making it superior to many other olefination methods. Since Aggarwal’s summary of the 50-year history of the Zweifel olefination in 2017, remarkable achievements have been made in terms of employing new organometallic species, performing reactions through electrochemical or photochemical pathways, and developing methods that furnish new types of products. This short review summarizes and discusses the very recent progress made on the Zweifel olefination and its latest applications in the synthesis of natural products.
1 Introduction
2 Zweifel Olefination with New Organometallic Species
3 Zweifel Olefination with New Migrating Groups
4 Electrochemical and Photocatalyzed Zweifel Olefinations
5 New Elimination and Migration Patterns Involving the Zweifel Olefination
6 Zweifel Olefination in Natural Product Synthesis
7 Other Reactions Involving the Zweifel Olefination Mechanism
8 Conclusions and Outlook
Key words
Zweifel olefination - 1,2-migration - tetracoordinate - alkenyl boron - transition-metal-free - stereospecificPublication History
Received: 12 August 2023
Accepted after revision: 08 September 2023
Accepted Manuscript online:
08 September 2023
Article published online:
07 November 2023
© 2023. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Zweifel G, Arzoumanian H, Whitney CC. J. Am. Chem. Soc. 1967; 89: 3652
- 1b Zweifel G, Polston NL, Whitney CC. J. Am. Chem. Soc. 1968; 90: 6243
- 1c Zweifel G, Fisher RP, Snow JT, Whitney CC. J. Am. Chem. Soc. 1971; 93: 6309
- 2 Armstrong RJ, Aggarwal VK. Synthesis 2017; 49: 3323
- 3 Music A, Hoarau C, Hilgert N, Zischka F, Didier D. Angew. Chem. Int. Ed. 2019; 58: 1188
- 4 Music A, Baumann AN, Spieß P, Hilgert N, Köllen M, Didier D. Org. Lett. 2019; 21: 2189
- 5a Locke GM, Bernhard SS. R, Senge MO. Chem. Eur. J. 2019; 25: 4590
- 5b Mykhailiuk PK. Org. Biomol. Chem. 2019; 17: 2839
- 6 Yu S, Jing C, Noble A, Aggarwal VK. Angew. Chem. Int. Ed. 2020; 59: 3917
- 7a Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
- 7b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
- 7c Yoshida J.-I, Shimizu A, Hayashi R. Chem. Rev. 2018; 118: 4702
- 8 Baumann AN, Music A, Dechent J, Meller N, Jagau TC, Didier D. Chem. Eur. J. 2020; 26: 8382
- 9 Music A, Nuber CM, Lemke Y, Spieß P, Didier D. Org. Lett. 2021; 23: 4179
- 10 Music A, Baumann AN, Boser F, Müller N, Matz F, Jagau TC, Didier D. Chem. Eur. J. 2021; 27: 4322
- 11 Xu N, Xu J, Zhu Q, Liu C. Adv. Synth. Catal. 2021; 363: 2403
- 12a Suzuki A, Miyaura N, Abiko S, Itoh M, Brown HC, Sinclair JA, Midland MM. J. Am. Chem. Soc. 1973; 95: 3080
- 12b Kropp MA, Schuster GB. J. Am. Chem. Soc. 1989; 111: 2316
- 13 Ma X, Li L, Tan M, Zhong Z, Liang J, Li P, Song Q. Chem 2023; 9: 1164
- 14a Leonori D, Aggarwal VK. Acc. Chem. Res. 2014; 47: 3174
- 14b Yeung K, Mykura RC, Aggarwal VK. Nat. Synth. 2022; 1: 117
- 15 Aiken SG, Bateman JM, Liao H.-H, Fawcett A, Bootwicha T, Vincetti P, Myers EL, Noble A, Aggarwal VK. Nat. Chem. 2023; 15: 248
- 16 Wu J, Lorenzo P, Zhong S, Ali M, Butts CP, Myers EL, Aggarwal VK. Nature 2017; 547: 436
- 17 Bold CP, Yeung K, Pape F, Kaiser D, Aggarwal VK. Org. Lett. 2022; 24: 9398
- 18 Linne Y, Schönwald A, Weißbach S, Kalesse M. Chem. Eur. J. 2020; 26: 7998
- 19a Blair DJ, Tanini D, Bateman JM, Scott HK, Myers EL, Aggarwal VK. Chem. Sci. 2017; 8: 2898
- 19b Fordham JM, Grayson MN, Aggarwal VK. Angew. Chem. Int. Ed. 2019; 58: 15268
- 20 Hancock EN, Kuker EL, Tantillo DJ, Brown MK. Angew. Chem. Int. Ed. 2020; 59: 436
- 21 Blair DJ, Fletcher CJ, Wheelhouse KM. P, Aggarwal VK. Angew. Chem. Int. Ed. 2014; 53: 5552
- 22 Yu X, Xiao L, Wang Z, Luo T. J. Am. Chem. Soc. 2019; 141: 3440
- 23 Zhai H, Liu D, Wang T. Org. Chem. Front. 2023; 10: 189
- 24 Lu Z, Zhang X, Guo Z, Chen Y, Mu T, Li A. J. Am. Chem. Soc. 2018; 140: 9211
- 25 Yasutomi H, Takeda D, Yoritate M, Higashibayashi S, Sugai T, Hirai G. Synlett 2023; 34: 347
- 26a Bonet A, Odachowski M, Leonori D, Essafi S, Aggarwal VK. Nat. Chem. 2014; 6: 584
- 26b Odachowski M, Bonet A, Essafi S, Conti-Ramsden P, Harvey JN, Leonori D, Aggarwal VK. J. Am. Chem. Soc. 2016; 138: 9521
- 27 Music A, Baumann AN, Spieß P, Plantefol A, Jagau TC, Didier D. J. Am. Chem. Soc. 2020; 142: 4341
- 28 Gerleve C, Studer A. Angew. Chem. Int. Ed. 2020; 59: 15468
- 29 Zhang L, Lovinger GJ, Edelstein EK, Szymaniak AA, Chierchia MP, Morken JP. Science 2016; 351: 70
- 30a Lovinger GJ, Aparece MD, Morken JP. J. Am. Chem. Soc. 2017; 139: 3153
- 30b Edelstein EK, Namirembe S, Morken JP. J. Am. Chem. Soc. 2017; 139: 5027
- 30c Meng Y, Kong Z, Morken JP. Angew. Chem. Int. Ed. 2020; 59: 8456
- 30d Wilhelmsen CA, Zhang X, Myhill JA, Morken JP. Angew. Chem. Int. Ed. 2022; 61: e202116784
- 30e Zhang X, Gao C, Morken JP. J. Am. Chem. Soc. 2023; 145: 16344
- 31 Aparece MD, Gao C, Lovinger GJ, Morken JP. Angew. Chem. Int. Ed. 2019; 58: 592