Subscribe to RSS
DOI: 10.1055/a-2178-6089
Primäre und sekundäre Lebertumore – aus Sicht der Nuklearmedizin
Primary and secondary liver tumors – the nuclear medicine perspective
Zusammenfassung
Konventionelle, radiologische Modalitäten wie die Ultraschalldiagnostik, CT- und MRT-Bildgebung sind der klinische Standard in der onkologischen Bildgebung primärer und sekundärer Lebertumore. In den letzten Jahrzehnten konnten nuklearmedizinische Verfahren, darunter insbesondere die PET/CT-Bildgebung, zusätzliche, molekulare Informationen liefern, die maßgeblich zur weiteren Optimierung der Stadieneinteilung und Risikostratifizierung beigetragen haben. Neben FDG als „Standard“-Radiopharmakon der PET/CT-Bildgebung werden in diesem Artikel weitere, spezifischere Radiopharmaka und neue Entwicklungen beschrieben.
Abstract
Conventional radiological modalities such as ultrasound, CT, and MRI are the clinical standard in oncological imaging of primary and secondary liver tumors. In recent decades, nuclear medicine, particularly PET/CT, provides additional, molecular information with the potential to further optimize staging and risk stratification. This article describes specific radiopharmaceuticals and new developments for PET imaging of primary and secondary liver tumors in addition to FDG as the “standard” PET/CT radiopharmaceutical.
Schlüsselwörter
Primäre und sekundäre Lebertumore - PET-CT - FDG - Somatostatin-Analoga - FAPI - DOPA - CXCR4Keywords
Primary and secondary liver tumors - PET-CT - FDG - somatostatin analogs - FAPI - DOPA - CXCR4Publication History
Article published online:
07 December 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Obenauf AC, Massague J. et al. Surviving at a Distance: Organ-Specific Metastasis. Trends Cancer 2015; 1: 76-91
- 2 Ridder J de, Wilt JH de, Simmer F. et al. Incidence and origin of histologically confirmed liver metastases: an explorative case-study of 23,154 patients. Oncotarget 2016; 7: 55368-55376
- 3 Freitas PS, Janicas C, Veiga J. et al. Imaging evaluation of the liver in oncology patients: A comparison of techniques. World J Hepatol 2021; 13: 1936-1955
- 4 Gangi A, Howe JR. The Landmark Series: Neuroendocrine Tumor Liver Metastases. Ann Surg Oncol 2020; 27: 3270-3280
- 5 Matos AP, Altun E, Ramalho M. et al. An overview of imaging techniques for liver metastases management. Expert Rev Gastroenterol Hepatol 2015; 9: 1561-1576
- 6 Heusch P, Antoch G. Morphologic and Functional Imaging of Non-Colorectal Liver Metastases. Viszeralmedizin 2015; 31: 387-392
- 7 Haug AR. Imaging of primary liver tumors with positron-emission tomography. Q J Nucl Med Mol Imaging 2017; 61: 292-300
- 8 Singal AG, Llovet JM, Yarchoan M. et al. AASLD Practice Guidance on prevention, diagnosis, and treatment of hepatocellular carcinoma. Hepatology 2023;
- 9 Huang DQ, Mathurin P, Cortez-Pinto H. et al. Global epidemiology of alcohol-associated cirrhosis and HCC: trends, projections and risk factors. Nat Rev Gastroenterol Hepatol 2023; 20: 37-49
- 10 Lincke T, Zech CJ. Liver metastases: Detection and staging. Eur J Radiol 2017; 97: 76-82
- 11 Biersack HJ, Thelen M, Torres JF. et al. Focal nodular hyperplasia of the liver as established by 99mTc sulfur colloid and HIDA scintigraphy. Radiology 1980; 137: 187-190
- 12 Allimant C, Deshayes E, Kafrouni M. et al. Hepatobiliary Scintigraphy and Glass (90)Y Radioembolization with Personalized Dosimetry: Dynamic Changes in Treated and Nontreated Liver. Diagnostics (Basel) 2021; 11
- 13 Velden S van der, Braat M, Labeur TA. et al. A Pilot Study on Hepatobiliary Scintigraphy to Monitor Regional Liver Function in (90)Y Radioembolization. J Nucl Med 2019; 60: 1430-1436
- 14 Braat M, Jong HW de, Seinstra BA. et al. Hepatobiliary scintigraphy may improve radioembolization treatment planning in HCC patients. EJNMMI Res 2017; 7: 2
- 15 Crisan G, Moldovean-Cioroianu NS, Timaru DG. et al. Radiopharmaceuticals for PET and SPECT Imaging: A Literature Review over the Last Decade. Int J Mol Sci 2022; 23
- 16 Peppicelli S, Andreucci E, Ruzzolini J. et al. FDG uptake in cancer: a continuing debate. Theranostics 2020; 10: 2944-2948
- 17 Antoch G, Saoudi N, Kuehl H. et al. Accuracy of whole-body dual-modality fluorine-18–2-fluoro-2-deoxy-D-glucose positron emission tomography and computed tomography (FDG-PET/CT) for tumor staging in solid tumors: comparison with CT and PET. J Clin Oncol 2004; 22: 4357-4368
- 18 Parihar AS, Dehdashti F, Wahl RL. FDG PET/CT-based Response Assessment in Malignancies. Radiographics 2023; 43: e220122
- 19 Hayes AR, Furtado O'Mahony L, Quigley AM. et al. The Combined Interpretation of 68Ga-DOTATATE PET/CT and 18F-FDG PET/CT in Metastatic Gastroenteropancreatic Neuroendocrine Tumors: A Classification System With Prognostic Impact. Clin Nucl Med 2022; 47: 26-35
- 20 Tong AK, Tham WY, Too CW. et al. Molecular Imaging and Therapy of Liver Tumors. Semin Nucl Med 2020; 50: 419-433
- 21 Cho Y, Lee DH, Lee YB. et al. Does 18F-FDG positron emission tomography-computed tomography have a role in initial staging of hepatocellular carcinoma?. PLoS One 2014; 9: e105679
- 22 Sun DW, An L, Wei F. et al. Prognostic significance of parameters from pretreatment (18)F-FDG PET in hepatocellular carcinoma: a meta-analysis. Abdom Radiol (NY) 2016; 41: 33-41
- 23 Sun M, Zhang G, Guo J. et al. Prognostic value of pretreatment PET/CT lean body mass-corrected parameters in patients with hepatocellular carcinoma. Nucl Med Commun 2018; 39: 564-571
- 24 Ozaki K, Harada K, Terayama N. et al. FDG-PET/CT imaging findings of hepatic tumors and tumor-like lesions based on molecular background. Jpn J Radiol 2020; 38: 697-718
- 25 Kim YJ, Yun M, Lee WJ. et al. Usefulness of 18F-FDG PET in intrahepatic cholangiocarcinoma. Eur J Nucl Med Mol Imaging 2003; 30: 1467-1472
- 26 Lin CY, Chen JH, Liang JA. et al. 18F-FDG PET or PET/CT for detecting extrahepatic metastases or recurrent hepatocellular carcinoma: a systematic review and meta-analysis. Eur J Radiol 2012; 81: 2417-2422
- 27 Wang AQ, Zheng YC, Du J. et al. Combined hepatocellular cholangiocarcinoma: Controversies to be addressed. World J Gastroenterol 2016; 22: 4459-4465
- 28 Koh KC, Lee H, Choi MS. et al. Clinicopathologic features and prognosis of combined hepatocellular cholangiocarcinoma. Am J Surg 2005; 189: 120-125
- 29 Park JC, Park JG, Jung GS. et al. Usefulness of (18)F-FDG PET/CT and Multiphase CT in the Differential Diagnosis of Hepatocellular Carcinoma and Combined Hepatocellular Carcinoma-Cholangiocarcinoma. Taehan Yongsang Uihakhoe Chi 2020; 81: 1424-1435
- 30 Meyer HJ, Wienke A, Surov A. Associations between GLUT expression and SUV values derived from FDG-PET in different tumors – A systematic review and meta analysis. PLoS One 2019; 14: e0217781
- 31 Bacigalupo L, Aufort S, Eberle MC. et al. Assessment of liver metastases from colorectal adenocarcinoma following chemotherapy: SPIO-MRI versus FDG-PET/CT. Radiol Med 2010; 115: 1087-1100
- 32 Coenegrachts K, De Geeter F, ter Beek L. et al. Comparison of MRI (including SS SE-EPI and SPIO-enhanced MRI) and FDG-PET/CT for the detection of colorectal liver metastases. Eur Radiol 2009; 19: 370-379
- 33 Rappeport ED, Loft A, Berthelsen AK. et al. Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: a prospective study with intraoperative confirmation. Acta Radiol 2007; 48: 369-378
- 34 Schnitzer ML, Buchner J, Biechele G. et al. Economic evaluation of 18F-FDG PET/CT, MRI and CE-CT in selection of colorectal liver metastases eligible for ablation – A cost-effectiveness analysis. Eur J Radiol 2023; 163: 110803
- 35 Sivesgaard K, Larsen LP, Sorensen M. et al. Diagnostic accuracy of CE-CT, MRI and FDG PET/CT for detecting colorectal cancer liver metastases in patients considered eligible for hepatic resection and/or local ablation. Eur Radiol 2018; 28: 4735-4747
- 36 Chan DL, Bernard EJ, Schembri G. et al. High Metabolic Tumour Volume on 18-Fluorodeoxyglucose Positron Emission Tomography Predicts Poor Survival from Neuroendocrine Neoplasms. Neuroendocrinology 2020; 110: 950-958
- 37 Cheson BD, Meignan M. Current Role of Functional Imaging in the Management of Lymphoma. Curr Oncol Rep 2021; 23: 144
- 38 Pomykala KL, Fendler WP, Vermesh O. et al. Molecular Imaging of Lymphoma: Future Directions and Perspectives. Semin Nucl Med 2023; 53: 449-456
- 39 Chang S, Shi X, Xu Z. et al. TNM staging system may be superior to Lugano and Ann Arbor systems in predicting the overall survival of patients with primary gastrointestinal lymphoma. J BUON 2015; 20: 812-819
- 40 Fallanca F, Alongi P, Incerti E. et al. Diagnostic accuracy of FDG PET/CT for clinical evaluation at the end of treatment of HL and NHL: a comparison of the Deauville Criteria (DC) and the International Harmonization Project Criteria (IHPC). Eur J Nucl Med Mol Imaging 2016; 43: 1837-1848
- 41 Jiang C, Su M, Kosik RO. et al. The Deauville 5-Point Scale Improves the Prognostic Value of Interim FDG PET/CT in Extranodal Natural Killer/T-Cell Lymphoma. Clin Nucl Med 2015; 40: 767-773
- 42 Makita S, Maruyama D, Maeshima AM. et al. A comparison of clinical staging using the Lugano versus Ann Arbor classifications in Japanese patients with Hodgkin lymphoma. Asia Pac J Clin Oncol 2020; 16: 108-114
- 43 Thuillier P, Bourhis D, Roudaut N. et al. Diagnostic Value of FDG PET-CT Quantitative Parameters and Deauville-Like 5 Point-Scale in Predicting Malignancy of Focal Thyroid Incidentaloma. Front Med (Lausanne) 2019; 6: 24
- 44 Yoo KH. Staging and response assessment of lymphoma: a brief review of the Lugano classification and the role of FDG-PET/CT. Blood Res 2022; 57: 75-78
- 45 Sandrasegaran K, Robinson PJ, Selby P. Staging of lymphoma in adults. Clin Radiol 1994; 49: 149-161
- 46 Avlonitis VS, Linos D. Primary hepatic lymphoma: a review. Eur J Surg 1999; 165: 725-729
- 47 Mahajan S, Kalra S, Chawla M. et al. Detection of Diffuse Infiltrative Primary Hepatic Lymphoma on FDG PET-CT: Hallmarks of Hepatic Superscan. World J Nucl Med 2016; 15: 142-144
- 48 Fani M, Mansi R, Nicolas GP. et al. Radiolabeled Somatostatin Analogs-A Continuously Evolving Class of Radiopharmaceuticals. Cancers (Basel) 2022; 14
- 49 Zhu W, Cheng Y, Wang X. et al. Head-to-Head Comparison of (68)Ga-DOTA-JR11 and (68)Ga-DOTATATE PET/CT in Patients with Metastatic, Well-Differentiated Neuroendocrine Tumors: A Prospective Study. J Nucl Med 2020; 61: 897-903
- 50 Hennrich U, Benesova M. (68)Ga]Ga-DOTA-TOC: The First FDA-Approved (68. Pharmaceuticals (Basel) 2020; 13
- 51 Manoharan P, Lamarca A, Navalkissoor S. et al. Safety, tolerability and clinical implementation of 'ready-to-use' (68)gallium-DOTA0-Tyr3-octreotide ((68)Ga-DOTATOC) (SomaKIT TOC) for injection in patients diagnosed with gastroenteropancreatic neuroendocrine tumours (GEP-NETs). ESMO Open 2020; 5
- 52 Beyer L, Gosewisch A, Lindner S. et al. Dosimetry and optimal scan time of [(18)F]SiTATE-PET/CT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2021; 48: 3571-3581
- 53 Ilhan H, Lindner S, Todica A. et al. Biodistribution and first clinical results of (18)F-SiFAlin-TATE PET: a novel (18)F-labeled somatostatin analog for imaging of neuroendocrine tumors. Eur J Nucl Med Mol Imaging 2020; 47: 870-880
- 54 Pauwels E, Cleeren F, Tshibangu T. et al. 18)F-AlF-NOTA-Octreotide Outperforms (68. J Nucl Med 2023; 64: 632-638
- 55 Pauwels E, Cleeren F, Tshibangu T. et al. Al(18)F-NOTA-octreotide: first comparison with (68)Ga-DOTATATE in a neuroendocrine tumour patient. Eur J Nucl Med Mol Imaging 2019; 46: 2398-2399
- 56 Pfeifer A, Knigge U, Binderup T. et al. 64Cu-DOTATATE PET for Neuroendocrine Tumors: A Prospective Head-to-Head Comparison with 111In-DTPA-Octreotide in 112 Patients. J Nucl Med 2015; 56: 847-854
- 57 Park S, Parihar AS, Bodei L. et al. Somatostatin Receptor Imaging and Theranostics: Current Practice and Future Prospects. J Nucl Med 2021; 62: 1323-1329
- 58 Srirajaskanthan R, Watkins J, Marelli L. et al. Expression of somatostatin and dopamine 2 receptors in neuroendocrine tumours and the potential role for new biotherapies. Neuroendocrinology 2009; 89: 308-314
- 59 Deutsche Gesellschaft fur Gastroenterologie V-uS, Netzwerk Neuroendokrine Tumoren e. V., Bundesorganisation Selbsthilfe NeuroEndokrine Tumoren e. V.. et al. Practice guideline neuroendocrine tumors – AWMF-Reg. 021–27. Z Gastroenterol 2018; 56: 583-681
- 60 Hope TA, Allen-Auerbach M, Bodei L. et al. SNMMI Procedure Standard/EANM Practice Guideline for SSTR PET: Imaging Neuroendocrine Tumors. J Nucl Med 2023; 64: 204-210
- 61 Shah MH, Goldner WS, Benson AB. et al. Neuroendocrine and Adrenal Tumors, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2021; 19: 839-868
- 62 You H, Kandathil A, Beg M. et al. Ga-68 DOTATATE PET/CT and F-18 FDG PET/CT in the evaluation of low and intermediate versus high-grade neuroendocrine tumors. Nucl Med Commun 2020; 41: 1060-1065
- 63 Cheng M, Tann M. Highly variable biodistribution of (68)Ga labeled somatostatin analogues (68)Ga-DOTA-NOC and (68)Ga-DOTA-TATE in neuroendocrine tumors: clinical implications for somatostatin receptor directed PET/CT. Hepatobiliary Surg Nutr 2022; 11: 654-661
- 64 Prasad V, Baum RP. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging 2010; 54: 61-67
- 65 Johnbeck CB, Knigge U, Kjaer A. PET tracers for somatostatin receptor imaging of neuroendocrine tumors: current status and review of the literature. Future Oncol 2014; 10: 2259-2277
- 66 Kroiss A, Putzer D, Decristoforo C. et al. 68Ga-DOTA-TOC uptake in neuroendocrine tumour and healthy tissue: differentiation of physiological uptake and pathological processes in PET/CT. Eur J Nucl Med Mol Imaging 2013; 40: 514-523
- 67 Eschbach RS, Hofmann M, Spath L. et al. Comparison of somatostatin receptor expression in patients with neuroendocrine tumours with and without somatostatin analogue treatment imaged with [(18)F]SiTATE. Front Oncol 2023; 13: 992316
- 68 Haug AR, Rominger A, Mustafa M. et al. Treatment with octreotide does not reduce tumor uptake of (68)Ga-DOTATATE as measured by PET/CT in patients with neuroendocrine tumors. J Nucl Med 2011; 52: 1679-1683
- 69 Dromain C, Vullierme MP, Hicks RJ. et al. ENETS standardized (synoptic) reporting for radiological imaging in neuroendocrine tumours. J Neuroendocrinol 2022; 34: e13044
- 70 Sundin A, Arnold R, Baudin E. et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine & Hybrid Imaging. Neuroendocrinology 2017; 105: 212-244
- 71 Haider M, Jiang BG, Parker JA. et al. Use of MRI and Ga-68 DOTATATE for the detection of neuroendocrine liver metastases. Abdom Radiol (NY) 2022; 47: 586-595
- 72 Ambrosini V, Kunikowska J, Baudin E. et al. Consensus on molecular imaging and theranostics in neuroendocrine neoplasms. Eur J Cancer 2021; 146: 56-73
- 73 Grawe F, Rosenberger N, Ingenerf M. et al. Diagnostic performance of PET/CT in the detection of liver metastases in well-differentiated NETs. Cancer Imaging 2023; 23: 41
- 74 Aygun N, Uludag M. Pheochromocytoma and Paraganglioma: From Clinical Findings to Diagnosis. Sisli Etfal Hastan Tip Bul 2020; 54: 271-280
- 75 Patel M, Tena I, Jha A. et al. Somatostatin Receptors and Analogs in Pheochromocytoma and Paraganglioma: Old Players in a New Precision Medicine World. Front Endocrinol (Lausanne) 2021; 12: 625312
- 76 Jha A, Ling A, Millo C. et al. Superiority of (68)Ga-DOTATATE over (18)F-FDG and anatomic imaging in the detection of succinate dehydrogenase mutation (SDHx )-related pheochromocytoma and paraganglioma in the pediatric population. Eur J Nucl Med Mol Imaging 2018; 45: 787-797
- 77 Tan TH, Hussein Z, Saad FF. et al. Diagnostic Performance of (68)Ga-DOTATATE PET/CT, (18)F-FDG PET/CT and (131)I-MIBG Scintigraphy in Mapping Metastatic Pheochromocytoma and Paraganglioma. Nucl Med Mol Imaging 2015; 49: 143-151
- 78 Kroiss A, Putzer D, Frech A. et al. A retrospective comparison between 68Ga-DOTA-TOC PET/CT and 18F-DOPA PET/CT in patients with extra-adrenal paraganglioma. Eur J Nucl Med Mol Imaging 2013; 40: 1800-1808
- 79 Loktev A, Lindner T, Mier W. et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J Nucl Med 2018; 59: 1423-1429
- 80 Shiga K, Hara M, Nagasaki T. et al. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel) 2015; 7: 2443-2458
- 81 Liu F, Qi L, Liu B. et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS One 2015; 10: e0116683
- 82 Kratochwil C, Flechsig P, Lindner T. et al. (68)Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 2019; 60: 801-805
- 83 Kuyumcu S, Sanli Y, Subramaniam RM. Fibroblast-Activated Protein Inhibitor PET/CT: Cancer Diagnosis and Management. Front Oncol 2021; 11: 758958
- 84 Giesel FL, Kratochwil C, Schlittenhardt J. et al. Head-to-head intra-individual comparison of biodistribution and tumor uptake of (68)Ga-FAPI and (18)F-FDG PET/CT in cancer patients. Eur J Nucl Med Mol Imaging 2021; 48: 4377-4385
- 85 Novruzov E, Dendl K, Ndlovu H. et al. Head-to-head Intra-individual Comparison of [(68)Ga]-FAPI and [(18)F]-FDG PET/CT in Patients with Bladder Cancer. Mol Imaging Biol 2022; 24: 651-658
- 86 Chen H, Pang Y, Wu J. et al. Comparison of [(68)Ga]Ga-DOTA-FAPI-04 and [(18)F] FDG PET/CT for the diagnosis of primary and metastatic lesions in patients with various types of cancer. Eur J Nucl Med Mol Imaging 2020; 47: 1820-1832
- 87 Guo W, Pang Y, Yao L. et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [(68)Ga]Ga-FAPI-04 PET/CT versus MRI and [(18)F]-FDG PET/CT. Eur J Nucl Med Mol Imaging 2021; 48: 1604-1617
- 88 Pabst KM, Trajkovic-Arsic M, Cheung PFY. et al. Superior Tumor Detection for (68)Ga-FAPI-46 Versus (18)F-FDG PET/CT and Conventional CT in Patients with Cholangiocarcinoma. J Nucl Med 2023; 64: 1049-1055
- 89 Kaplan I, Kepenek F, Guzel Y. et al. The Role of 68Ga FAPI-04 and 18F-FDG PET/CT in Detecting Liver Metastases in Different Types of Cancer. Nuklearmedizin 2023; 62: 252-259
- 90 Kreppel B, Gonzalez-Carmona MA, Feldmann G. et al. Fibroblast activation protein inhibitor (FAPi) positive tumour fraction on PET/CT correlates with Ki-67 in liver metastases of neuroendocrine tumours. Nuklearmedizin 2021; 60: 344-354
- 91 Domanska UM, Kruizinga RC, Nagengast WB. et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur J Cancer 2013; 49: 219-230
- 92 Duell J, Rosenwald A, Krummenast F. et al. CXCR4 PET/CT Scan Is Superior to FDG PET/CT Scan in Accurately Defining Marginal Zone Lymphoma Nodal and Extranodal Involvement. Blood 2018; 132: 2881
- 93 Lapa C, Schreder M, Schirbel A. et al. (68)Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma – Comparison to [(18)F. Theranostics 2017; 7: 205-212
- 94 Lapa C, Hänscheid H, Kortüm KM. et al. CXCR4-gerichtete Endoradiotherapie von hämatologischen Erkrankungen. Der Nuklearmediziner 2019; 42: 36-45
- 95 Burger JA. Targeting the microenvironment in chronic lymphocytic leukemia is changing the therapeutic landscape. Curr Opin Oncol 2012; 24: 643-649
- 96 Werner RA, Kircher S, Higuchi T. et al. CXCR4-Directed Imaging in Solid Tumors. Front Oncol 2019; 9: 770
- 97 Weich A, Werner RA, Buck AK. et al. CXCR4-Directed PET/CT in Patients with Newly Diagnosed Neuroendocrine Carcinomas. Diagnostics (Basel) 2021; 11
- 98 Xiang ZL, Zeng ZC, Tang ZY. et al. Chemokine receptor CXCR4 expression in hepatocellular carcinoma patients increases the risk of bone metastases and poor survival. BMC Cancer 2009; 9: 176
- 99 Kaemmerer D, Schindler R, Mussbach F. et al. Somatostatin and CXCR4 chemokine receptor expression in hepatocellular and cholangiocellular carcinomas: tumor capillaries as promising targets. BMC Cancer 2017; 17: 896
- 100 Weich A, Serfling SE, Schlotelburg W. et al. Impact of CXCR4-Directed PET/CT on Staging and Proposed Oncologic Management in Patients With Digestive System Tumors. Clin Nucl Med 2023; 48: 586-593
- 101 Buck AK, Haug A, Dreher N. et al. Imaging of C-X-C Motif Chemokine Receptor 4 Expression in 690 Patients with Solid or Hematologic Neoplasms Using (68)Ga-Pentixafor PET. J Nucl Med 2022; 63: 1687-1692
- 102 Monnier J, Boissan M, L'Helgoualc'h A. et al. CXCR7 is up-regulated in human and murine hepatocellular carcinoma and is specifically expressed by endothelial cells. Eur J Cancer 2012; 48: 138-148
- 103 Chatterjee S, Behnam Azad B, Nimmagadda S. The intricate role of CXCR4 in cancer. Adv Cancer Res 2014; 124: 31-82
- 104 Kim J, Takeuchi H, Lam ST. et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005; 23: 2744-2753
- 105 Werner RA, Weich A, Higuchi T. et al. Imaging of Chemokine Receptor 4 Expression in Neuroendocrine Tumors – a Triple Tracer Comparative Approach. Theranostics 2017; 7: 1489-1498
- 106 Kaemmerer D, Trager T, Hoffmeister M. et al. Inverse expression of somatostatin and CXCR4 chemokine receptors in gastroenteropancreatic neuroendocrine neoplasms of different malignancy. Oncotarget 2015; 6: 27566-27579
- 107 Biasci D, Smoragiewicz M, Connell CM. et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci U S A 2020; 117: 28960-28970
- 108 Bockorny B, Semenisty V, Macarulla T. et al. BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT trial. Nat Med 2020; 26: 878-885
- 109 Otsuka M, Ichiya Y, Kuwabara Y. et al. Striatal 18F-dopa uptake and brain glucose metabolism by PET in patients with syndrome of progressive ataxia. J Neurol Sci 1994; 124: 198-203
- 110 Jain S, Dhingra VK. An overview of radiolabeled amino acid tracers in oncologic imaging. Front Oncol 2023; 13: 983023
- 111 Bozkurt MF, Virgolini I, Balogova S. et al. Guideline for PET/CT imaging of neuroendocrine neoplasms with (68)Ga-DOTA-conjugated somatostatin receptor targeting peptides and (18)F-DOPA. Eur J Nucl Med Mol Imaging 2017; 44: 1588-1601
- 112 Kroiss AS, Uprimny C, Shulkin BL. et al. 68)Ga-DOTATOC PET/CT in the localization of head and neck paraganglioma compared with (18)F-DOPA PET/CT and (123. Nucl Med Biol 2019; 71: 47-53
- 113 Kroiss AS, Uprimny C, Shulkin BL. et al. 68)Ga-DOTATOC PET/CT in the localization of metastatic extra-adrenal paraganglioma and pheochromocytoma compared with (18. Rev Esp Med Nucl Imagen Mol (Engl Ed) 2019; 38: 94-99
- 114 Ansquer C, Touchefeu Y, Faivre-Chauvet A. et al. Head-to-Head Comparison of 18F-DOPA PET/CT and 68Ga-DOTANOC PET/CT in Patients With Midgut Neuroendocrine Tumors. Clin Nucl Med 2021; 46: 181-186
- 115 Piccardo A, Fiz F, Bottoni G. et al. Head-to-head comparison between (18) F-DOPA PET/CT and (68) Ga-DOTA peptides PET/CT in detecting intestinal neuroendocrine tumours: A systematic review and meta-analysis. Clin Endocrinol (Oxf) 2021; 95: 595-605
- 116 Castilla-Lievre MA, Franco D, Gervais P. et al. Diagnostic value of combining (1)(1)C-choline and (1)(8)F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016; 43: 852-859
- 117 Bertagna F, Bertoli M, Bosio G. et al. Diagnostic role of radiolabelled choline PET or PET/CT in hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int 2014; 8: 493-500
- 118 Signore G, Nicod-Lalonde M, Prior JO. et al. Detection rate of radiolabelled choline PET or PET/CT in hepatocellular carcinoma: an updated systematic review and meta-analysis. Clinical and Translational Imaging 2019; 7: 237-253
- 119 Jeon JY, Lee M, Whang SH. et al. Regulation of Acetate Utilization by Monocarboxylate Transporter 1 (MCT1) in Hepatocellular Carcinoma (HCC). Oncol Res 2018; 26: 71-81
- 120 Park JW, Kim JH, Kim SK. et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med 2008; 49: 1912-1921