Subscribe to RSS
DOI: 10.1055/a-2178-8847
Die Leberverfettung der Milchkuh: Teil 2
Genetische Prädisposition und ProphylaxeThe lipidosis in the liver of the dairy cow: Part 2 Genetic predisposition and prophylaxisThe lipidosis in the liver of the dairy cow: Part 2 Genetic predisposition and prophylaxis
Zusammenfassung
Die Leberverfettung bei Milchkühen ist das Ergebnis eines gestörten Gleichgewichts zwischen der Aufnahme von freien Fettsäuren (NEFA) in die Leberzellen im Verhältnis zur Kapazität der Metabolisierung und der limitierten Abgabe als very low density lipoprotein (VLDL). Die Leberverfettung mit dem Risiko einer Ketose hat sich aufgrund der primären Selektion auf Milchleistung ohne ausreichende Berücksichtigung der dieser Leistung zugrundeliegenden Mechanismen ergeben und weist eine genetische Disposition auf. Mit dem neuen Relativzuchtwert Gesamt der Deutsch Holstein Friesian Kühe wird dieser Problematik (Ketoserisiko) Rechnung getragen und damit ein genetisch bedingtes Gesundheitsrisiko bestätigt.
Die ectopische Fettablagerung in der Leber schließt eine Reihe von Reaktionsschritten wie Lipolyse, Aufnahme in die Leberzellen, Metabolisierung und Abgabe als VLDL ein, die in unterschiedlicher Weise direkt oder indirekt im Sinne einer Prophylaxe beeinflusst werden können. Diese Möglichkeiten werden zum besseren Verständnis pathophysiologischer Abläufe aufgeführt. Es handelt sich um die Verfütterung einer glucogenen Diät, um kontrollierte Fütterung während der Trockenstehperiode, den Zusatz von Niacin, Cholin, Carnitin oder eine Reduzierung der metabolischen Belastung. Indirekt können auch die Maßnahmen zu Prophylaxe der Ketose in diese Diskussion einbezogen werden.
Abtract
Hepatic lipidosis in dairy cows is the result of a disturbed balance between the uptake of non-esterified fatty acids (NEFA), their metabolism in the hepatocytes, and the limited efflux of TG as very-low-density lipoprotein (VLDL). Lipidosis and the associated risk for ketosis represents a consequence of selecting dairy cows primarily for milk production without considering the basic physiological mechanisms of this trait. The overall risk for lipidosis and ketosis possesses a genetic background and the recently released new breeding value of the German Holstein Friesian cows now sets the path for correction of this risk and in that confirms the assumed genetic threat. Ectopic fat deposition in the liver is the result of various steps including lipolysis, uptake of fat by the liver cell, its metabolism, and finally release as very-low-density lipoprotein (VLDL). These reactions may be modulated directly or indirectly and hence, serve as basis for prophylactic measures. The pertaining methods are described in order to support an improved understanding of the pathogenesis of lipidosis and ketosis. They consist of feeding a glucogenic diet, restricted feeding during the close-up time as well as supplementation with choline, niacin, carnitine, or the reduction of milking frequency. Prophylactic measures for the prevention of ketosis are also included in this discussion.
Publication History
Received: 16 August 2022
Accepted: 06 March 2023
Article published online:
13 November 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Mulligan F, Doherty M. Production diseases of the transition cow. Vet J 2008; 176: 3-9
- 2 Martens H. Die Leberverfettung der Milchkuh: Teil 1, Bedeutung von Insulin und der Wachstumshormon-IGF-1-Achse. Tierarztl Prax Ausg G Grosstiere Nutztiere 2023; 51: 97-108
- 3 Arshad K, Santos J. Hepatic triacylglycerol associations with production and health in dairy cows. J Dairy Sci 2022; 105: 5393-5409
- 4 Murondoti A, Jorritsma R, Beynen A. et al. Activities of the enzymes of hepatic gluconeogenesis in periparturient cows with induced fat liver. J Dairy Res 2004; 71: 129-134
- 5 Simianer H, Solbu H, Schaeffer L. Estimated genetic correlations between disease and yield traits in dairy cattle. J Dairy Sci 1991; 74: 4358-4365
- 6 Uribe H, Kennedy B, Martin S. et al. Genetic parameters for common health disorders of Holstein. J Dairy Sci 1995; 78: 421-430
- 7 Dohoo I, Martin S, McMillan I. et al. Disease, production and culling in Holstein-Friesian cows. II. Age, season and sire effects. Prev Vet Med 1984; 2: 655-670
- 8 Van Dorp T, Dekkers J, Martin S. et al. Genetic parameters of health disorders, and relationship with 305-day milk yield and conformation traits of registered Holstein cows. J Dairy Sci 1998; 81: 2264-2270
- 9 Oliveira Junior G, Schenkel F, Alcantara L. et al. Estimated genetic parameters for all genetically evaluated traits in Canadian Holsteins. J Dairy Sci 2021; 104: 9002-9015
- 10 Oikonomou G, Valergakis G, Arsenos G. et al. Genetic profile of body energy and blood metabolites traits across lactation in primiparous Holstein cows. J Dairy Sci 2008; 91: 2814-2822
- 11 Buttchereit N, Stamer E, Junge W. et al. Genetic parameters for energy balance, fat/protein ratio, body condition score and disease traits in German Holstein cows. Animal Breed. Genet 2012; 129: 280-288
- 12 Ingvartsen K, Friggens N. To what extend do variabilities in hormones, metabolites and energy intake explain variability in milk yield?. Dom Anim Endocrinol 2005; 29: 294-304
- 13 Han van der Kolk J, Gross J, Gerber V. et al. Disturbed bovine mitochondrial lipid metabolism: a review. Vet Quart 2017; 37: 262-273
- 14 Van Knegsel A, van den Brand H, Dijkstra J. et al. Effect of dietary energy source on energy balance, metabolites and reproduction variables in dairy cows in early lactation. Theriogenology 2017; 68S: S274-S280
- 15 Moallem U, Folman Y, Bor A. et al. Effect of calcium soaps of fatty acids and administration of somatotropin on milk production, preovulatory follicular development, and plasma and follicular fluid lipid composition in high yielding dairy cows. J Dairy Sci 1999; 82: 2358-2368
- 16 Jerred M, Carrol D, Combs D. et al. Effects of fat supplementation and immature alfalfa to concentrate ratio on lactation performance of dairy cattle. J Dairy Sci 1999; 73: 2842-2854
- 17 Hoedemaker M, Prange D, Zerbe H. et al. Peripartal propylene glycol supplementation and metabolism, animal health, fertility, and production in dairy cows. J Dairy Sci 2004; 87: 2136-21346
- 18 Studer V, Grummer R, Bertics S. et al. Effect of prepartum propylene glycol administration on periparturient fatty liver in dairy cows. J Dairy Sci 1993; 76: 2931-2939
- 19 Gong J, Lee W, Garnsworthy P. et al. Effect of dietary-induce increases in circulating insulin concentrations during the early postpartum period on reproductive function in dairy cows. Reproduction 2002; 123: 419-427
- 20 Van Knegsel A, van den Brand H, Dijkstra J. et al. Effect of glucogenic vs. lipogenic diets on energy balance, blood metabolites, and reproduction in primiparous and multiparous dairy cows in early lactation. J Dairy Sci 2007; 90: 3397-3409
- 21 Khorrami B, Khiaosa-ard R, Zebeli Q. Models to predict the risk of subacute ruminal acidosis in dairy cows based on dietary and cow factors: A meta-analysis. J Dairy Sci 2012; 104: 7761-7780
- 22 Ametaj B. A new understanding of the causes of fatty liver in dairy cows. Adv Dairy Technol 2005; 17: 97-112
- 23 Horst E, Kvidera S, Baumgard L. Invited review: The influence of immune activation on transition cow health and performance – A critical evaluation of traditional dogmas. J Dairy Sci 2012; 104: 8380-8410
- 24 Hammon H, Stürmer G, Schneider F. et al. Performance and metabolic and endocrine changes with emphasis on glucose metabolism in high-yielding dairy cows with high and low fat content in liver after calving. J Dairy Sci 2009; 92: 1554-1556
- 25 Schulz K, Frahm J, Meyer U. et al. Effects of prepartal body condition score and peripartal energy supply of dairy cows on postpartal lipolysis, energy balance and ketogenesis: an animal model to investigate subclinical ketosis. J Dairy Res 2014; 81: 257-266
- 26 Schuh K, Sadri H, Häussler S. Comparison of performance and metabolism from late pregnancy to early lactation in dairy cows with elevated v. normal body condition at dry-off. Animal 2019; 13: 1478-1488
- 27 Bertics S, Grummer R, Cadorniga-Valino C. et al. Effect of prepartum dry matter intake on liver triglyceride concentration and early lactation. J Dairy Sci 1992; 75: 1914-1922
- 28 Shahzad K, Bionaz M, Trevisi E. et al. Integrative analyses of hepatic differentially expressed genes and blood biomarkers during the peripartal period between dairy cows overfed or restricted-fed energy prepartum. PLoS One 2014; 9: e99757
- 29 Richards B, Janovick N, Moyes K. et al. Comparison of prepartum low-energy or high-energy diets with a 2-diet far-off and close-up strategy for multiparous and primiparous cows. J Dairy Sci 2020; 103: 9067-9080
- 30 Schären M, Snedec T, Riefke B. et al. Aspects of transition cow metabolomics-Part I: Effects of a metaphylactic butaphosphan and cyanocobalamin treatment on the metabolome in liver, blood, and urine in cows with different liver metabotypes. J Dairy Sci 2021; 104: 9205-9226
- 31 Gille A, Bodor E, Ahmed K. et al. Nicotinic acid: PharmacologicaleEffects and mechanisms of action. Ann Rev Pharm Toxicol 2008; 48: 79-106
- 32 Pires J, Grummer R. The use of nicotinic acid to induce sustained low plasma non-esterified fatty acids in feed-restricted Holstein cows. J Dairy Sci 2007; 90: 3725-3732
- 33 Zeitz J, Weber A, Most E. et al. Effects of supplementing rumen-protected niacin on fibre composition and metabolism of skeletal muscle in dairy cows during early lactation. J Dairy Sci 2018; 101: 8004-8200
- 34 Morey S, Mamedova L, Anderson E. et al. Effects of encapsulated niacin on metabolism and production of periparturient dairy cows. J Dairy Sci 2011; 94: 5090-5104
- 35 Yuan K, Shaver R, Bertics S. et al. Effect of rumen protected niacin on lipid metabolism, oxidative stress, and performance of transition cows. J Dairy Sci 2012; 95: 2673-2679
- 36 Skaar T, Grummer R, Dentine M. et al. Seasonal effects of prepartum and postpartum fat and niacin feeding on lactation performance and lipid metabolism. J Dairy Sci 1989; 72: 2028-2038
- 37 Ringseis R, Zeitz J, Weber A. et al. Hepatic transcript profiling in early-lactation dairy cows fed rumen-protected niacin during the transition from late pregnancy to lactation. J Dairy Sci 2019; 102: 365-376
- 38 Carlson D, McFadden J, D’Angelo A. et al. Dietary l-carnitine affects periparturient nutrient metabolism and lactation in multiparous cows. J Dairy Sci 2007; 90: 2422-2441
- 39 Meyer J, Daniels S, Grindler S. et al. Effects of a dietary L-Carnitine supplementation on performance, energy metabolism and recovery from calving in dairy cows. Animals 2020; 10: 342
- 40 Ringseis R, Keller J, Eder K. Regulation of carnitine status in ruminants and efficacy of carnitine supplementation on performance and health aspects of ruminant livestock: a review. Arch Animal Nutr 2018; 72: 1-30
- 41 Chandler T, White M. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes. PLoS One 2018; 12: e0171080
- 42 Cole L, Vance J, Vance D. Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta 2012; 1821: 754-761
- 43 Zenobi M, Scheffler T, Zuniga J. et al. Feeding increasing amounts of ruminally protected choline decreased fatty liver in non-lactating, pregnant Holstein cows in negative energy status. J Dairy Sci 2018; 101: 5902-5923
- 44 Zenobi M, Gardinal R, Zuniga J. et al. Effect of prepartum energy intake and supplementation with ruminally protected choline on the innate and adaptive immunity of multiparous Holstein cows. J Dairy Sci 2020; 103: 2200-2216
- 45 Bollati J, Zenobi M, Barton B. et al. Responses to rumen-protected choline in transition cows do not depend on prepartum body condition. J Dairy Sci 203 103: 2272-2286
- 46 Arshad A, Zenobi M, Staples C. et al. Meta-analysis of the effects of supplemental rumen-protected choline during the transition period on performance and health of parous dairy cows. J Dairy Sci 2020; 103: 282-300
- 47 Katoh N. Relevance of apolipoproteins in the development of fat liver and fat liver-related peripartum diseases in dairy cows. J Vet Med Sci 2002; 64: 293-307
- 48 Grummer R. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J Dairy Sci 1993; 76: 3882-3896
- 49 Mann S, Leal Yepes F, Behling-Kelly E. et al. The effect of different treatments for early-lactation hyperketonemia on blood β-hydroxybutyrate, plasma nonesterified fatty acids, glucose, insulin, and glucagon in dairy cattle. J Dairy Sci 2017; 100: 6470-6482
- 50 Mann S, Leal Yepes F, Wakshlag J. et al. The effect of different treatments for early-lactation hyperketonemia on liver triglycerides, glycogen, and expression of key metabolic enzymes in Dairy cattle. J Dairy Sci 2018; 101: 1626-1637
- 51 Leal Yepes F, Mann S, Overton T. et al. Hepatic effects of rumen-protected branched-chain amino acids with or without propylene glycol supplementation in dairy cows during early lactation. J Dairy Sci 2021; 104: 10324-10337
- 52 Christensen J, Grummer R, Rasmussen F. et al. Effect of method delivery of propylene glycol on plasma metabolites of feed-restricted cattle. J Dairy Sci 1997; 80: 563-568
- 53 Duffield T, Rabiee A, Lean I. A Meat-analysis of the effect of Monensin in lactating dairy cattle. Part 1: Metabolic effects. J Dairy Sci 2008; 91: 1334-1346
- 54 Bergman E. Energy contributions of volatile fatty-acids from the gastrointestinal tract in various species. Physiol Rev 1990; 70: 567-590
- 55 Markantonatos X, Varga G. Effects of monensin on glucose metabolism in transition dairy cows. J Dairy Sci 2017; 100: 9020-9035
- 56 Duffield T, Rabiee A, Lean I. A Meat-analysis of the effect of Monensin in lactating dairy cattle. Part 2: Production effects. J Dairy Sci 2008; 91: 1347-1360
- 57 Duffield T, Rabiee A, Lean I. A Meat-analysis of the effect of Monensin in lactating dairy cattle. Part 2: Health and reproduction. J Dairy Sci 2008; 91: 2328-2341
- 58 Vasquez J, McCarthy M, Richards B. et al. Effects of prepartum diets varying in dietary energy density and Monensin on early-lactation performance in dairy cows. J Dairy Sci 2020; 104: 2881-2895
- 59 Zahra L, Duffield F, Leslie K. et al. Effects of rumen-protected choline and Monensin on milk production and metabolism of periparturient dairy cows. J Dairy Sci 2006; 89: 4808-4818
- 60 McCarthy M, Yasui T, Ryan C. et al. Metabolism of early-lactation dairy cows as affected by dietary starch and Monensin supplementation. J Dairy Sci 2015; 98: 3351-3365
- 61 Lacasse P, Vanacker N, Ollier S. et al. Innovative dairy cow management to improve resistance to metabolic and infectious diseases during the transition period. Res Vet Sci 2018; 116: 40-46
- 62 Williamson M, Serrenho R, McBride B. et al. Reducing milking frequency from twice to once daily as an adjunct treatment for ketosis in lactating dairy cows – A randomized controlled trial. J Dairy Sci 2022; 105: 1402-1417
- 63 Morin P-A, Krug C, Chorfi Y. et al. A randomized controlled trial on the effect of incomplete milking during early lactation on ketonemia and body condition loss in Holstein dairy cows. J Dairy Sci 2018; 101: 4513-4526
- 64 Bauman D, Currie E. Partitioning of nutrients during pregnancy and lactation. J Dairy Sci 1980; 63: 1514-1529
- 65 Wall E, McFadden T. Triennial Lactation Symposium: A local affair: How the mammary gland adapts to changes in milking frequency. J Animal Sci 2012; 90: 1695-1707
- 66 Martens H. Transition period of the dairy cow revisited: I. Homeorhesis and its changes by selection and management. J Agric Sci 2020; 12: 1-24
- 67 Martens H. Transition period of the dairy cow revisited: II. Homeorhetic stimulus and ketosis with implication for fertility. J Agric Sci 2020; 12: 25-54
- 68 Sundrum A. Metabolic disorders in the transition period indicate that the dairy cows’ ability to adapt is overstressed. Animals 2015; 5: 978-1020
- 69 Jiang H, Lucy M, Crooker B. et al. Expression of growth hormone Receptor 1A mRNA is decreased in dairy cows but not in beef cows at parturition. J Dairy Sci 2005; 88: 1370-1377
- 70 Hart I, Bines J, Balch C. et al. Hormone and metabolic differences between lactating beef and dairy cattle. Life Sci 1975; 16: 1285-1292
- 71 Lucy M, Verkerk G, Whyte B. et al. Somatotropic axis components and nutrient partitioning in genetically diverse dairy cows management under different feed allowances in a pasture system. J Dairy Sci 2009; 92: 526-539
- 72 Wilson C, Tran J, Erion D. et al. Hepatocyte-specific disruption of CD36 attenuates fatty liver and improves insulin sensitivity in HFD-fed mice. Endocrinology 2016; 157: 570-585
- 73 Lucy M, Jiang H, Kobayashi Y. Changes in the somatotropic axis associated with the initiation of lactation. J Dairy Sci 2001; 84: E113-E119
- 74 Barret D, Steele M, Overton M. Managing energy balance in the transition cow. Vet Rec 2014; 174: 655-656
- 75 Lyons N, Cooke J, Wilson S. et al. Relationships between metabolite and IGF1 concentrations with fertility and production outcomes following left abomasal displacement. Vet Rec 2014; 174: 657-662
- 76 Bobe G, Young J, Beitz D. Invited review: Pathology, aetiology, prevention, and treatment of fat liver in dairy cows. J Dairy Sci 2004; 87: 3105-3124
- 77 Pietsch F, Schären M, Snedec T. et al. Aspects of transition cow metabolomics—Part II: Histomorphologic changes in the liver parenchyma throughout the transition period, in cows with different liver metabotypes and effects of a metaphylactic butaphosphan and cyanocobalamin treatment. J Dairy Sci 2021; 104: 9227-9244
- 78 Horst E, Kvidera S, Baumgard L. Invited review: The influence of immune activation on transition cow health and performance – A critical evaluation of traditional dogmas. J Dairy Sci 2021; 104: 8380-8410
- 79 Gross J, Bruckmaier R. Repeatability of metabolic responses to a nutrient deficiency in early and mid lactation and implications for robustness of dairy cows. J Dairy Sci 2015; 98: 8634-8643
- 80 Bell A. Regulation of organic nutrients metabolism during transition from late pregnancy to early lactation. J Animal Sci 1995; 73: 2804-2819
- 81 Danfær V. Nutrient metabolism and utilization in the liver. Livestock Prod Sci 1994; 39: 115-127
- 82 Aschenbach J, Kristensen N, Donkin S. et al. Gluconeogenesis in dairy cows: the secret of making sweet milk from sour dough. IUBMB Life 2010; 62: 869-877
- 83 Radcliff P, McCormick B, Keisler D. et al. Partial feed restriction decreases growth hormone receptor 1A mRNA expression in postpartum dairy cows. J Dairy Sci 2006; 89: 611-619
- 84 Radcliff R, McCormack B, Crooker B. et al. Growth hormone (GH) binding and expression of GH receptor 1A mRNA in hepatic tissue of periparturient dairy cows. J Dairy Sci 2003; 86: 3933-3940
- 85 Mense K, Meyerholz M, Aruajo M. et al. The somatotropic axis during the physiological estrus cycle in dairy heifers—Effect on hepatic expression of GHR and SOCS2. J Dairy Sci 2015; 98: 2409-2418
- 86 Eastridge M. Major advances in applied dairy cattle nutrition. J Dairy Sci 2006; 89: 1311-1323
- 87 Gruber L, Ledinek M, Spiekers H. et al. Aktualisierung der Futteraufnahme-Schätzformel für Milchkühe auf Basis des Forschungs¬projektes „OptiKuh“. Workshop „Die optimale Kuh: gesund, effizient, umweltgerecht“. eMissionCow/optiKuh2. 28.-29.09.2021, Braunschweig 18-27
- 88 Bar-Peled U, Aharoni Y, Robinson B. The effect of enhanced milk yield of dairy cows by frequent milking or suckling on intake and digestibility of the diet. J Dairy Sci 1998; 81: 1420-1427
- 89 Veerkamp R, Koenen E. Multi-trait covariance functions to estimate genetic correlations between milk yield, dry-matter intake and live during lactation. In J. Oldham, G. Simm, A. Groen, B. Nielsen, J. Pryce, & T. Lawrence (Eds.). Metabolic stress in dairy cows. British Society of Animal Science Occasional Publication (1991; No. 24, 247-151). Pencuit. Midlothian: British Society of Animal Science;
- 90 Buttchereit N, Stamer E, Junge W. Short communication: Genetic relationship among daily energy balance, feed intake, body condition score, and fat to protein ratio of milk in dairy cows. J Dairy Sci 2011; 94: 1586-1591
- 91 Spurlock D, Dekkers J, Fernando R. Genetic parameters for energy balance, feed efficiency, and related traits in Holstein cattle. J Dairy Sci 2012; 93: 5393-5402
- 92 Krattenmacher N, Thaller G, Tetens J. Analysis of the genetic architecture of energy balance and its major determinants dry matter intake and energy-corrected milk yield in primiparous Holstein cows. J Dairy Sci 2019; 102: 3241-3253
- 93 Friggens N, Newbold J. Towards a biological basis for prediction nutrient partitioning: The dairy cow as an example. Animal 2007; 1: 87-97
- 94 Agnes R, Yan T. Impact of recent research on energy feeding system for dairy cattle. Livestock Prod Sci 2000; 66: 197-215
- 95 Gruber L, Urdl M, Obritzhauser W. er al. Influence of energy and nutrient supply pre- and postpartum on performance of multiparous Simmental, Brown Swiss and Holstein cows in early lactation. Animal 2014; 8: 58-71
- 96 Fürll M. Ist die klassische Leberschutztherapie noch aktuell?. Tierärztliche Umschau 2015; 70: 307-315
- 97 McNamara J. Integrating genotype and nutrition on utilization of body reserves during lactation of dairy cattle. 2000; Pages 353–370 in Symposium on Ruminant Physiology. P. B. Cronje, ed.CAB Int. London, UK..
- 98 Vernon R, Finley E, Watt P. Adenosine and the control of adrenergic regulation of adipose tissue lipolysis during lactation. J Dairy Sci 1991; 74: 695-705
- 99 Balch C. Feed intake regulation: A limiting factor in animal production. Livestock Product Sci 1976; 3: 101-102
- 100 Arendonk J, Nieuwhof G, Vos H. Genetic aspects of feed intake and efficiency in lactating dairy heifers. Livestock Prod Sci 1991; 29: 263-275
- 101 Von Leesen R, Tetens J, Stamer E. et al. Effect of genetic merit for energy balance on luteal activity and subsequent reproductive performance in primiparous Holstein-Friesian cows. J Dairy Sci 2014; 97: 1128-1138
- 102 Rodehutscord M, Titze N. Herausforderung Futteraufnahme – Überlegungen zur Milchkuh von morgen. Züchtungskunde 2018; 90: 7-12
- 103 Vernon R. Homeorhesis 1998; 64-73 Hannah Research Institute
- 104 Ring S, Evans R, Cromie A. et al. Cross-sectional analyses of a national database to determine if superior genetic merit translates to superior dairy cow performance. J Dairy Sci 2021; 104: 8076-8093