Synthesis 2024; 56(14): 2145-2182
DOI: 10.1055/a-2179-1338
review

Chemical Synthesis of Substituted Naphthalene Derivatives: A Review

Mittali Maheshwari
,
Nazar Hussain
The authors are highly thankful to Institute of Eminence, Banaras Hindu University (IoE BHU), funded by the University Grants Commission, for the seed grant and DST-SERB for EEQ/2021/000553 grant.


Abstract

This review outlines progress in the synthesis of substituted naphthalene derivatives. Naphthalene and its derivatives exhibit various biological activities such as anti-inflammatory, anticancer, antiviral, antitubercular, antimicrobial, antihypertensive, antidiabetic, etc. Several strategies have been developed for the construction of naphthalene derivatives, primarily focused on metal-catalyzed reactions (palladium, copper, zinc, rhodium, platinum, nickel, etc.,) and Lewis acid catalyzed transformations. This review discusses the preparations of naphthalene derivatives using various salts such as gallium chlorides, gold chlorides, gold bromides, various gold complexes as well as Brønsted acids like triflic acid and trifluoroacetic acid, and Lewis acids such as boron trifluoride etherate. Additionally, miscellaneous types of reactions are explored involving both metal and Lewis acids. The transformational approaches covered in this review include cycloadditions, carboannulations, benzannulations, electroannulations, rearrangements, and cross-dehydrogenative coupling reactions. Overall this review provides a comprehensive and up-to-date account of the current state of preparations of substituted naphthalenes, highlighting their medicinal and industrial importance.

1 Introduction

1.1 Medicinal Importance of Naphthalenes

2 Synthesis of Substituted Naphthalenes

2.1 Metal-Catalyzed Reactions

2.1.1 Palladium-Catalyzed Reactions

2.1.2 Copper-Catalyzed Reactions

2.1.3 Zinc-Catalyzed Reactions

2.1.4 Iron-Catalyzed Reactions

2.1.5 Rhodium-Catalyzed Reactions

2.1.6 Platinum-Catalyzed Reactions

2.1.7 Nickel-Catalyzed Reactions

2.1.8 Other Metal-Catalyzed Reactions

3 Lewis Acid Catalyzed Reactions

4 Miscellaneous Reactions

5 Conclusion



Publication History

Received: 21 July 2023

Accepted: 20 September 2023

Accepted Manuscript online:
20 September 2023

Article published online:
11 December 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Müller M, Kübel C, Müllen K. Chem. Eur. J. 1998; 4: 2099
  • 2 Scott LT. Chem. Soc. Rev. 2015; 44: 6464
  • 3 Wu Y.-T, Siegel JS. Chem. Rev. 2006; 106: 4843
  • 4 Tang CW, VanSlyke SA. Appl. Phys. Lett. 1987; 51: 913
  • 5 Wu K.-C, Ku P.-J, Lin C.-S, Shih H.-T, Wu F.-I, Huang M.-J, Lin J.-J, Chen I.-C, Cheng C.-H. Adv. Funct. Mater. 2008; 18: 67
  • 6 Gillani SS, Mehboob T, Attique I, Chaudhry M. Polym. Sci., Ser. A 2021; 63: 672
  • 7 Liu G, Xiao C, Negri F, Li Y, Wang Z. Angew. Chem. Int. Ed. 2020; 59: 2008
  • 8 Xiao S, Kang SJ, Wu Y, Ahn S, Kim JB, Loo Y.-L, Siegrist T, Steigerwald ML, Li H, Nuckolls C. Chem. Sci. 2013; 4: 2018
  • 9 Fernández I. Chem. Sci. 2020; 11: 3769
  • 10 Bringmann G, Lombe BK, Steinert C, Ioset KN, Brun R, Turini F, Heubl G, Mudogo V. Org. Lett. 2013; 15: 2590
  • 11 Prévost S, Dezaire A, Escargueil A. J. Org. Chem. 2018; 83: 4871
  • 12 Amoore JE, Hautala E. J. Appl. Toxicol. 1983; 3: 272
  • 13 Heidelberg EE. Justus Liebigs Ann. Chem. 1866; 137: 327
  • 14 Graebe C. Justus Liebigs Ann. Chem. 1869; 149: 20
  • 15 Haworth RD. J. Chem. Soc. 1932; 1125
  • 16 Cruickshank DW. J, Sparks RA. Proc. R. Soc. London, Ser. A 1960; 258: 270
  • 17 Makar S, Saha T, Singh SK. Eur. J. Med. Chem. 2019; 161: 252
  • 18 Nose M, Suzuki H, Suzuki H. J. Org. Chem. 2001; 66: 4356
  • 19 Iida K, Ishida S, Watanabe T, Arai T. J. Org. Chem. 2019; 84: 7411
  • 20 Debnath AK, Radigan L, Jiang S. J. Med. Chem. 1999; 42: 3203
  • 21 Laverty G, McCloskey AP, Gilmore BF, Jones DS, Zhou J, Xu B. Biomacromolecules 2014; 15: 3429
  • 22 Chen Y.-Y, Gopala L, Bheemanaboina RR. Y, Liu H.-B, Cheng Y, Geng R.-X, Zhou C.-H. ACS Med. Chem. Lett. 2017; 8: 1331
  • 23 Wilkinson RG, Shepherd RG, Thomas JP, Baughn C. J. Am. Chem. Soc. 1961; 83: 2212
  • 24 Goudie AC, Gaster LM, Lake AW, Rose CJ, Freeman PC, Hughes BO, Miller D. J. Med. Chem. 1978; 21: 1260
  • 25 de Groot FM. H, Loos WJ, Koekkoek R, van Berkom LW. A, Busscher GF, Seelen AE, Albrecht C, de Bruijn P, Scheeren HW. J. Org. Chem. 2001; 66: 8815
  • 26 Valente S, Trisciuoglio D, De Luca T, Nebbioso A, Labella D, Lenoci A, Bigogno C, Dondio G, Miceli M, Brosch G, Del Bufalo D, Altucci L, Mai A. J. Med. Chem. 2014; 57: 6259
  • 27 Abate C, Niso M, Lacivita E, Mosier PD, Toscano A, Perrone R. J. Med. Chem. 2011; 54: 1022
  • 28 Jeleń M, Bavavea EI, Pappa M, Kourounakis AP, Morak-Młodawska B, Pluta K. Med. Chem. Res. 2015; 24: 1725
  • 29 Atwal KS, O’Reilly BC, Ruby EP, Turk CF, Aberg G, Asaad MM, Bergey JL, Moreland S, Powell JR. J. Med. Chem. 1987; 30: 627
  • 30 Bokor É, Kun S, Goyard D, Tóth M, Praly J.-P, Vidal S, Somsák L. Chem. Rev. 2017; 117: 1687
  • 31 Ang W, Chen G, Xiong L, Chang Y, Pi W, Liu Y, Li C, Zheng J, Zhou L, Yang B, Deng Y, Yang S, Luo Y, Wei Y. Eur. J. Med. Chem. 2014; 82: 263
  • 32 Biswas S, Zhang S, Fernandez F, Ghosh B, Zhen J, Kuzhikandathil E, Reith ME. A, Dutta AK. J. Med. Chem. 2008; 51: 101
  • 33 Ermolieff J, Loy JA, Koelsch G, Tang J. Biochemistry 2000; 39: 12450
  • 34 Mao G.-J, Wei T.-T, Wang X.-X, Huan S, Lu D.-Q, Zhang J, Zhang X.-B, Tan W, Shen G.-L, Yu R.-Q. Anal. Chem. 2013; 85: 7875
  • 35 Walker KA. M, Wallach MB, Hirschfeld DR. J. Med. Chem. 1981; 24: 67
  • 36 Huang Q, Larock RC. Org. Lett. 2002; 4: 2505
  • 37 Wang Y, Burton DJ. Org. Lett. 2006; 8: 5295
  • 38 Wu YT, Huang KH, Shin CC, Wu TC. Chem. Eur. J. 2008; 14: 6697
  • 39 Wu J, Cui X, Mi X, Li Y, Wu Y. Chem. Commun. 2010; 46: 6771
  • 40 Feng C, Loh TP. J. Am. Chem. Soc. 2010; 132: 17710
  • 41 Shimizu M, Tomioka Y, Nagao I, Kadowaki T, Hiyama T. Chem. Asian J. 2012; 7: 1644
  • 42 Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 2084
  • 43 Raji Reddy C, Dilipkumar U, Damoder Reddy M. Org. Lett. 2014; 16: 3792
  • 44 Wei D, Hu TJ, Feng CG, Lin GQ. Chin. J. Chem. 2018; 36: 743
  • 45 Zhang H, Yu Y, Huang S, Huang X. Adv. Synth. Catal. 2019; 361: 1576
  • 46 Li S.-S, Zhao M, Liu XW, Xu JL, Xu YH, Loh TP. J. Org. Chem. 2019; 84: 12848
  • 47 Li Y, Qiu S, Fan L, Yin G. ChemCatChem 2020; 12: 1230
  • 48 Yu B, Yu H, Huang H. Org. Lett. 2020; 22: 8962
  • 49 He Y, Fan X, Zheng Z, Liu Q, Zhang X. Org. Lett. 2020; 22: 9053
  • 50 Ence CC, Martinez EE, Himes SR, Nazari SH, Moreno MR, Matu MF, Larsen SG, Gassaway KJ, Valdivia-Berroeta GA, Smith SJ, Ess DH, Michaelis DJ. ACS Catal. 2021; 11: 10394
  • 51 Xu H, Li S, Liu H, Fu H, Jiang Y. Chem. Commun. 2010; 46: 7617
  • 52 Sun H, Wu X, Hua R. Tetrahedron Lett. 2011; 52: 4408
  • 53 Chen Z, Zeng W, Jiang H, Liu L. Org. Lett. 2012; 14: 5385
  • 54 Liu WM, Tnay YL, Gan KP, Liu ZH, Tyan WH, Narasaka K. Helv. Chim. Acta 2012; 95: 1953
  • 55 Reddy RS, Prasad PK, Ahuja BB, Sudalai A. J. Org. Chem. 2013; 78: 5045
  • 56 Lehnherr D, Alzola JM, Lobkovsky EB, Dichtel WR. Chem. Eur. J. 2015; 21: 18122
  • 57 Zhang M, Ruan W, Zhang H.-J, Li W, Wen T.-B. J. Org. Chem. 2016; 81: 1696
  • 58 Li PH, Yu LZ, Zhang XY, Shi M. Org. Lett. 2018; 20: 4516
  • 59 Su L, Ren T, Dong J, Liu L, Xie S, Yuan L, Zhou Y, Yin SF. J. Am. Chem. Soc. 2019; 141: 2535
  • 60 Fang XL, Tang RY, Zhang XG, Zhong P, Deng CL, Li JH. J. Organomet. Chem. 2011; 696: 352
  • 61 Sakthivel K, Srinivasan K. J. Org. Chem. 2014; 79: 3244
  • 62 He Y, Zhang X, Fan X. Chem. Commun. 2014; 50: 5641
  • 63 Liu H, Cao L, Sun J, Fossey JS, Deng WP. Chem. Commun. 2012; 48: 2674
  • 64 Bu X, Hong L, Liu R, Hong J, Zhang Z, Zhou X. Tetrahedron 2012; 68: 7960
  • 65 Zhu S, Xiao Y, Guo Z, Jiang H. Org. Lett. 2013; 15: 898
  • 66 Zhang C, Chen L, Chen K, Jiang H, Zhu S. Org. Chem. Front. 2018; 5: 1028
  • 67 Fukutani T, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 5198
  • 68 Sakabe K, Tsurugi H, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2010; 16: 445
  • 69 Qian P, Chen F, Pan C. Synth. Commun. 2012; 42: 3242
  • 70 Zhou S, Wang J, Wang L, Song C, Chen K, Zhu J. Angew. Chem. Int. Ed. 2016; 55: 9384
  • 71 Xu Y, Yang X, Zhou X, Kong L, Li X. Org. Lett. 2017; 19: 4307
  • 72 Chen X, Wang M, Zhang X, Fan X. Org. Lett. 2019; 21: 2541
  • 73 Hanchate V, Kumar A, Prabhu KR. Org. Lett. 2019; 21: 8424
  • 74 Kusama H, Funami H, Takaya J, Iwasawa N. Org. Lett. 2004; 6: 605
  • 75 Kang D, Kim J, Oh S, Lee PH. Org. Lett. 2012; 14: 5636
  • 76 Hsieh JC, Cheng CH. Chem. Commun. 2005; 2459
  • 77 Hsieh JC, Cheng CH. Chem. Commun. 2008; 2992
  • 78 Kuninobu Y, Nishina Y, Takai K. Tetrahedron 2007; 63: 8463
  • 79 Glass AC, Morris BB, Zakharov LN, Liu S.-Y. Org. Lett. 2008; 10: 4855
  • 80 Camedda N, Lanzi M, Bigi F, Maggi R, Maestri G. Org. Lett. 2021; 23: 6536
  • 81 Malhotra D, Liu L.-P, Mashuta MS, Hammond GB. Chem. Eur. J. 2013; 19: 4043
  • 82 Viswanathan GS, Wang M, Li C.-J. Angew. Chem. Int. Ed. 2002; 41: 2138
  • 83 Viswanathan GS, Li CJ. Synlett 2002; 1553
  • 84 Asao N, Takahashi K, Lee S, Kasahara T, Yamamoto Y. J. Am. Chem. Soc. 2002; 124: 12650
  • 85 Asao N, Nogami T, Lee S, Yamamoto Y. J. Am. Chem. Soc. 2003; 125: 10921
  • 86 Asao N, Aikawa H, Yamamoto Y. J. Am. Chem. Soc. 2004; 126: 7458
  • 87 Shibata T, Ueno Y, Kanda K. Synlett 2006; 411
  • 88 Dudnik AS, Schwier T, Gevorgyan V. Org. Lett. 2008; 10: 1465
  • 89 Balamurugan R, Gudla V. Org. Lett. 2009; 11: 3116
  • 90 Jagdale AR, Park JH, Youn SW. J. Org. Chem. 2011; 76: 7204
  • 91 Gudla V, Balamurugan R. J. Org. Chem. 2011; 76: 9919
  • 92 Song XR, Xia XF, Song QB, Yang F, Li YX, Liu XY, Liang YM. Org. Lett. 2012; 14: 3344
  • 93 Gudla V, Balamurugan R. Chem. Asian J. 2013; 8: 414
  • 94 Liu Y, Guo J, Liu Y, Wang X, Wang Y, Jia X, Wei G, Chen L, Xiao J, Cheng M. Chem. Commun. 2014; 50: 6243
  • 95 Yan J, Tay GL, Neo C, Lee BR, Chan PW. H. Org. Lett. 2015; 17: 4176
  • 96 Barluenga J, Vázquez-Villa H, Ballesteros A, González JM. Org. Lett. 2003; 5: 4121
  • 97 Abbastabar Ahangar H, Mahdavinia GH, Marjani K, Hafezian A. J. Iran. Chem. Soc. 2010; 7: 770
  • 98 Samarat A, Kuninobu Y, Takai K. Synlett 2011; 2177
  • 99 Gao P, Liu J, Wei Y. Org. Lett. 2013; 15: 2872
  • 100 Xiang S, Hu H, Ma J, Li Y, Wang B, Feng C, Zhao K, Hu P, Chen X. Sci. China Chem. 2013; 56: 945
  • 101 Mudududdla R, Sharma R, Abbat S, Bharatam PV, Vishwakarma RA, Bharate SB. Chem. Commun. 2014; 50: 12076
  • 102 Manojveer S, Balamurugan R. Org. Lett. 2014; 16: 1712
  • 103 Manojveer S, Balamurugan R. Eur. J. Org. Chem. 2015; 2015: 4254
  • 104 Ma H, Hu XQ, Luo YC, Xu PF. Org. Lett. 2017; 19: 6666
  • 105 Watanabe T, Abe H, Mutoh Y, Saito S. Chem. Eur. J. 2018; 24: 11545
  • 106 Chen H, Ouyang L, Liu J, Shi WJ, Chen G, Zheng L. J. Org. Chem. 2019; 84: 12755
  • 107 Ge C, Wang G, Wu P, Chen C. Org. Lett. 2019; 21: 5010
  • 108 Mandal M, Sakthivel S, Balamurugan R. J. Org. Chem. 2021; 86: 333
  • 109 Sahu AK, Unnava R, Behera BK, Saikia AK. Org. Biomol. Chem. 2021; 19: 2430
  • 110 Li H, Shan L, Min L, Weng Y, Wang X, Hu Y. J. Org. Chem. 2021; 86: 15011
  • 111 Wang Z, Wang C, Xi Z. Tetrahedron Lett. 2006; 47: 4157
  • 112 Li SG, Hu XQ, Jia ZX, Xu PF. Tetrahedron 2010; 66: 8557
  • 113 Zhou H, Xing Y, Yao J, Chen J. Org. Lett. 2010; 12: 3674
  • 114 Wang J, Wang M, Xiang J, Zhu Y, Xue W, Wu A. Org. Lett. 2012; 14: 6060
  • 115 Wang LJ, Zhu HT, Lu L, Yang F, Liu XY, Liang YM. Org. Lett. 2012; 14: 1990
  • 116 Ponra S, Vitale MR, Michelet V, Ratovelomanana-Vidal V. J. Org. Chem. 2015; 80: 3250
  • 117 Yanai H, Ishii N, Matsumoto T. Chem. Commun. 2016; 52: 7974
  • 118 Chang MY, Cheng YC. Org. Lett. 2016; 18: 1682
  • 119 Shu WM, Zheng KL, Ma JR, Wu AX. Org. Lett. 2016; 18: 3762
  • 120 Wang Q, Zheng N. ACS Catal. 2017; 7: 4197
  • 121 Singh S, Samineni R, Pabbaraja S, Mehta G. Angew. Chem. Int. Ed. 2018; 57: 16847
  • 122 Cao X, Cai B.-G, Xu G.-Y, Xuan J. Chem. Asian J. 2018; 13: 3855
  • 123 Shu W.-M, Liu S, He J.-X, Wang S, Wu A.-X. J. Org. Chem. 2018; 83: 9156
  • 124 Hussain N, Jana K, Ganguly B, Mukherjee D. Org. Lett. 2018; 20: 1572
  • 125 Ma Y, Lv J, Liu C, Yao X, Yan G, Yu W, Ye J. Angew. Chem. Int. Ed. 2019; 58: 6756
  • 126 Feng T, He Y, Zhang X, Fan X. Adv. Synth. Catal. 2019; 361: 1271
  • 127 Lu XL, Yang B, He H, Gao S. Org. Chem. Front. 2021; 8: 1143
  • 128 Chen X, Zhong C, Duan X, Guan Z, Gu L, Luo Z, Chen Y, Zhang Y. J. Org. Chem. 2022; 87: 6601
  • 129 Liang K, Wang S, Cong H, Lu L, Lei A. CCS Chem. 2022; 4: 1557
  • 130 Zou S, Zhang Z, Chen C, Xi C. Chin. Chem. Lett. 2022; 33: 3021
  • 131 Ubale AS, Londhe GS, Shaikh MA, Gnanaprakasam B. J. Org. Chem. 2022; 87: 8104