Synthesis
DOI: 10.1055/a-2182-7416
paper
10th Pacific Symposium on Radical Chemistry (PSRC-10)

Photoinduced Alkylation of Diazines with N-(Acyloxy)phthalimides in the Presence of Triethylamine

Itziar Guerrero
a   School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
,
Eugene Yew Kun Tan
a   School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
,
Yuliang Liu
a   School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
,
b   Drug Substance Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, UK
,
a   School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
› Author Affiliations
This work was supported by funding from Nanyang Technological University (NTU), GlaxoSmithKline (REQ0315299), and the Ministry of Education – Singapore (Academic Research Fund Tier 2: MOE-T2EP10122-0007).


Dedicated to Professor Shigeru Yamago on the occasion of his 60th birthday

Abstract

A photochemical protocol for the alkylation of diazines (pyrimidines, pyrazines, and pyridazines) with N-(acyloxy)phthalimides has been developed. The process is facilitated by the presence of triethylamine under irradiation with 427–390 nm light; this enables rapid cross-coupling reactions to construct a wide range of alkylated diazines.

Supporting Information



Publication History

Received: 06 September 2023

Accepted after revision: 27 September 2023

Accepted Manuscript online:
27 September 2023

Article published online:
06 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster
  • 2 https://www.acs.org/content/dam/acsorg/events/drug-discovery/slides/2019-09-19-recent-crop-protection-poster.pdf
  • 3 Minisci F, Bernardi R, Bertini F, Galli R, Perchinummo M. Tetrahedron 1971; 27: 3575
  • 4 Minisci F, Fontana F, Vismara E. J. Heterocycl. Chem. 1990; 27: 79-96
  • 5 Duncton MA. J. Med. Chem. Commun. 2011; 2: 1135
  • 6 Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
  • 7 Sun AC, McAtee RC, McClain EJ, Stephenson CR. J. Synthesis 2019; 51: 1063
  • 8 McClain EJ, Wortman AK, Stephenson CR. J. Chem. Sci. 2022; 13: 12158
  • 9 Sun AC, McClain EJ, Beatty JW, Stephenson CR. J. Org. Lett. 2018; 20: 3487
  • 10 Beatty JW, Douglas JJ, Miller R, McAtee RC, Cole KP, Stephenson CR. J. Chem 2016; 1: 456
  • 11 Beatty JW, Douglas JJ, Cole KP, Stephenson CR. J. Nat. Commun. 2015; 6: 7919
  • 12 Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
  • 13 Okada K, Okamoto K, Oda M. J. Am. Chem. Soc. 1988; 110: 8736
  • 14 Karmakar S, Silamkoti A, Meanwell NA, Mathur A, Gupta AK. Adv. Synth. Catal. 2021; 363: 3693
  • 15 Murarka S. Adv. Synth. Catal. 2018; 360: 1735
  • 16 Proctor RS. J, Davis HJ, Phipps RJ. Science 2018; 360: 419
  • 17 Sherwood TC, Li N, Yazdani AN, Dhar TG. M. J. Org. Chem. 2018; 83: 3000
  • 18 Cheng W.-M, Shang R, Fu M.-C, Fu Y. Chem. Eur. J. 2017; 23: 2537
  • 19 Cheng W.-M, Shang R, Fu Y. ACS Catal. 2017; 7: 907
  • 20 Fu M.-C, Shang R, Zhao B, Wang B, Fu Y. Science 2019; 363: 1429
  • 21 Bosque I, Bach T. ACS Catal. 2019; 9: 9103
  • 22 de Pedro Beato E, Spinnato D, Zhou W, Melchiorre P. J. Am. Chem. Soc. 2021; 143: 12304
  • 23 Sharique M, Majhi J, Dhungana RK, Kammer LM, Krumb M, Lipp A, Romero E, Molander GA. Chem. Sci. 2022; 13: 5701
  • 24 Tasnim T, Ayodele MJ, Pitre SP. J. Org. Chem. 2022; 87: 10555
  • 25 Yang Z, Liu Y, Cao K, Zhang X, Jiang H, Li J. Beilstein J. Org. Chem. 2021; 17: 771
  • 26 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
  • 27 Yuan Y.-q, Majumder S, Yang M.-h, Guo S.-r. Tetrahedron Lett. 2020; 62: 151506
  • 28 Lima CG. S, Lima TM, Duarte M, Jurberg ID, Paixão MW. ACS Catal. 2016; 6: 1389
  • 29 Liang D, Chen J.-R, Tan L.-P, He Z.-W, Xiao W.-J. J. Am. Chem. Soc. 2022; 144: 6040
  • 30 Reid JP, Procter RS. J, Sigman MS, Phipps RJ. J. Am. Chem. Soc. 2019; 141: 19178
  • 31 Graham MA, Noonan G, Cherryman JH, Douglas JJ, Gonzalez M, Jackson LV, Leslie K, Liu Z.-q, McKinney D, Munday RH, Parsons CD, Whittaker DT. E, Zhang E.-x, Zhang J.-w. Org. Process Res. Dev. 2021; 25: 57
  • 32 2-Chloropyrimidine (2) ($3.9/g:https://www.sigmaaldrich.com/US/en/product/aldrich/193291) is much cheaper than N-(acyloxy)phthalimide 1 ($65/g: https://www.combi-blocks.com/cgi-bin/find.cgi?JP-4977)
  • 33 Yoon UC, Mariano PS. Acc. Chem. Res. 2001; 34: 523
  • 34 Anderson JM, Measom ND, Murphy JA, Poole DL. Angew. Chem. Int. Ed. 2021; 60: 24754
  • 35 Wu C, Ying T, Yang X, Su W, Dushkin AV, Yu J. Org. Lett. 2021; 23: 6423
  • 36 Shore DG. M, Wasik KA, Lyssikatos JP, Estrada AA. Tetrahedron Lett. 2015; 56: 4063
  • 37 O’Hara F, Blackmond DG, Baran PS. J. Am. Chem. Soc. 2013; 135: 12122
  • 38 Xie X, Zhang Y, Hao J, Wan W. Org. Biomol. Chem. 2020; 18: 400
  • 39 Huang Q, Qin L, Zard SZ. Tetrahedron 2018; 74: 5804
  • 40 Bohman B, Berntsson B, Dixon RC. M, Stewart CD, Barrow RA. Org. Lett. 2014; 16: 2787
  • 41 Buzzetti L, Crisenza GE. M, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 3730
  • 42 Wortman AK, Stephenson CR. J. Chem 2023; 9: 2390
  • 43 The process from radical intermediate IV to product 3 could be mediated by the radical anion of 3 (formed by deprotonation before SET). We observed an irreversible reduction wave of 3 in the CV measurement (see the SI) and determined the reduction potential of 3 as E 1/2 = –2.06 V vs. SCE. As the reduction potentials of N-(acyloxy)phthalimide 1 is –1.29 V vs. SCE (see the SI), the radical anion of 3 could potentially function as an electron carrier to N-(acyloxy)phthalimide 1 to facilitate the proposed chain propagation. On the other hand, hydrodechlorination of 2-chloropyrimidine (2) (E 1/2 = –1.75 V vs. SCE) and 3 was not observed at all.
  • 44 Studer A, Curran DP. Angew. Chem. Int. Ed. 2011; 50: 5018
  • 45 The alkylation of other diazines especially with the reaction time longer than 5 h (Scheme 3) could also be facilitated by the non-chain redox mechanism.
  • 46 Huang C.-Y, Li J, Li C.-J. Nat. Commun. 2021; 12: 4010