Adipositas - Ursachen, Folgeerkrankungen, Therapie 2023; 17(04): 191-196
DOI: 10.1055/a-2185-7599
Review

Die Energiebilanz charakterisiert Adipositas, sie erklärt sie aber nicht und sie ermöglicht keine Strategien für eine nachhaltige Behandlung

Energy balance characterizes but does not explain obesity and it does not enable strategies for prevention and sustainable treatment
Anja Bosy-Westphal
1   Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
,
Manfred J. Müller
1   Institut für Humanernährung und Lebensmittelkunde, Christian-Albrechts-Universität zu Kiel, Kiel, Deutschland
› Author Affiliations

Zusammenfassung

Die Energiebilanz dient häufig zur Erklärung der Entstehung von Übergewicht sowie als Basis für konservative Therapiemaßnahmen. Dies impliziert, dass Übergewicht durch eine zu hohe Energieaufnahme und/oder einen Mangel an Bewegung erklärt ist und somit eine Verringerung der Energiezufuhr oder eine Erhöhung des Energieverbrauchs zu einem Energiedefizit und damit zu einer Gewichtsabnahme führen. Dieses vereinfachende Paradigma lässt jedoch die Regulation der Energiebilanz außer Acht und verkennt damit die eigentlichen Ursachen und Therapieoptionen von Übergewicht. Die Kontrolle der Energiebilanz ist ein dynamischer Prozess, bei dem Veränderungen in einer Komponente der Energiebilanz eine Kompensation in anderen Komponenten des Systems zur Folge haben. Darüber hinaus haben Kalorien aus verschiedenen Makronährstoffquellen oder zu unterschiedlichen Tageszeiten verzehrt metabolische Auswirkungen, die über ihren Wert als Brennstoff hinausgehen, zu einer Änderung der Partitionierung der Energie im Stoffwechsel führen und damit den Appetit steigern. Die Energiebilanz dient nicht einer Lösung des Adipositasproblems. Diese ergeben sich aus dem Verständnis der Determinanten und Interaktion von Lebensstilfaktoren wie Zuckerkonsum, Snacking-Behavior und körperlicher Aktivität im Hinblick auf adipogene Stoffwechselveränderungen.

Abstract

The energy balance paradigm is commonly used to explain the development of overweight and serves as a basis for conservative therapeutic measures. It is implied that obesity is explained by an excessive energy intake and/or a lack of exercise, and that a reduction in energy intake or an increase in energy consumption leads to an energy deficit and thus to weight loss. This simplistic paradigm, however, ignores the control of energy balance and thus fails to address the actual causes and treatment options for obesity. Control of energy balance is a dynamic process in which changes in one component of energy balance can trigger compensation in other components of the system. Furthermore, calories from different macronutrient sources or consumed at different times of the day have metabolic effects that go beyond their value as fuel and lead to a change in the partitioning of energy in the metabolism, thereby increasing appetite. The energy balance paradigm cannot provide solutions of the obesity issue which arise from understanding the determinants and interaction of lifestyle factors such as sugar consumption, snacking behavior, and physical activity with respect to adipogenic metabolic changes.



Publication History

Article published online:
04 December 2023

© 2023. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wells JC, Siervo M. Obesity and energy balance: is the tail wagging the dog?. Eur J Clin Nutr 2011; 65: 1173-1189
  • 2 Prentice AM, Jebb SA. Obesity in Britain: gluttony or sloth?. BMJ 1995; 311: 437-439
  • 3 Lustig RH. Childhood obesity: behavioral aberration or biochemical drive? Reinterpreting the First Law of Thermodynamics. Nat Clin Pract Endocrinol Metab 2006; 2: 447-458
  • 4 Taubes G. The Diet Delusion. Vermillion; 2008. London:
  • 5 Pontzer H, Durazo-Arvizu R, Dugas LR. et al. Constrained Total Energy Expenditure and Metabolic Adaptation to Physical Activity in Adult Humans. Curr Biol 2016; 26: 410-417
  • 6 Careau V, Halsey LG, Pontzer H. et al. Energy compensation and adiposity in humans. Curr Biol 2021; 31: e2
  • 7 Freedhoff Y, Hall KD. Weight loss diet studies: we need help not hype. Lancet 2016; 388: 849-851
  • 8 Ludwig DS, Aronne LJ, Astrup A. et al. The carbohydrate-insulin model: a physiological perspective on the obesity pandemic. Am J Clin Nutr 2021; 114: 1873-1885
  • 9 Speakman JR, Hall KD. Carbohydrates, insulin and obesity. Science 2021; 372: 577-578
  • 10 Leclerc I, Kahn A, Doiron B. The 50-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex. FEBS Lett 1998; 431: 180-184
  • 11 Cha SH, Wolfgang M, Tokutake Y. et al. Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci USA 2008; 105: 16871-16875
  • 12 Tappy L, Le KA. Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010; 90: 23-46
  • 13 Johnson MA, Tekkanat K, Schmaltz SP. et al. Adenosine triphosphate turnover in humans. Decreased degradation during relative hyperphosphatemia. J Clin Invest 1989; 84: 990-995
  • 14 Caton PW, Nayuni NK, Khan N. et al. Fructose induces gluconeogenesis and lipogenesis through a Sirt1-dependent mechanism. J Endocrinol 2011; 208: 273-283
  • 15 Shu Y, Hassan F, Ostrowski MC. et al. Role of hepatic PKCβ in nutritional regulation of hepatic glycogen synthesis. JCI Insight 2021; 6: e149023
  • 16 Jiang S, Young JL, Wang K. et al. Diabetic-induced Alterations in Hepatic Glucose and Lipid Metabolism: The Role of Type 1 and Type 2 Diabetes Mellitus (Review). Mol. Med Rep 2020; 22: 603-611
  • 17 López-Soldado I, Zafra D, Duran J. et al. Liver glycogen reduces food intake and attenuates obesity in a high-fat diet-fed mouse model. Diabetes 2015; 64: 796-807
  • 18 López-Soldado I, Guinovart JJ, Duran J. Active Glycogen Synthase in the Liver Prevents High-Fat Diet-Induced Glucose Intolerance, Decreases Food Intake, and Lowers Body Weight. Int J Mol Sci 2023; 24: 2574
  • 19 Valdearcos M, Robblee MM, Benjamin DI. et al. Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 2014; 9: 2124-2138
  • 20 Williams LM. Hypothalamic dysfunction in obesity. Proc Nutr Soc 2012; 71: 521-533
  • 21 Jais A, Brüning JC. Hypothalamic inflammation in obesity and metabolic disease. J Clin Invest 2017; 127: 24-32
  • 22 Sánchez-Alegría K, Arias C. Functional consequences of brain exposure to saturated fatty acids: From energy metabolism and insulin resistance to neuronal damage. Endocrinol Diabetes Metab 2023; 6: e386
  • 23 Panda S. Circadian physiology of metabolism. Science 2016; 354: 1008-1015
  • 24 Sutton EF, Beyl R, Early KS. et al. Early time-restricted feeding improves insulin sensitivity, blood pressure, and oxidative stress even without weight loss in men with prediabetes. Cell Metab 2018; 27: 1212-1221.e3
  • 25 Wilkinson MJ, Manoogian ENC, Zadourian A. et al. Ten-Hour Time-Restricted Eating Reduces Weight, Blood Pressure, and Atherogenic Lipids in Patients with Metabolic Syndrome. Cell Metab 2020; 31: 92-104.e5
  • 26 Mihaylova MM, Chaix A, Delibegovic M. et al. When a calorie is not just a calorie: Diet quality and timing as mediators of metabolism and healthy aging. Cell Metab 2023; 35: 1114-1131
  • 27 Polidori D, Sanghvi A, Seeley RJ. et al. How Strongly Does Appetite Counter Weight Loss? Quantification of the Feedback Control of Human Energy Intake. Obesity 2016; 24: 2289-2295
  • 28 Sumithran P, Prendergast LA, Delbridge E. et al. Long-term persistence of hormonal adaptations to weight loss. N Engl J Med 2011; 365: 1597-1604
  • 29 Meyer-Gerspach AC, Wölnerhanssen B, Beglinger B. et al. Gastric and intestinal satiation in obese and normal weight healthy people. Physiol Behav 2014; 129: 265-271
  • 30 DeBenedictis JN, Nymo S, Ollestad KH. et al. Changes in the Homeostatic Appetite System After Weight Loss Reflect a Normalization Toward a Lower Body Weight. J Clin Endocrinol Metab 2020; 105: e2538-46
  • 31 Siedler MR, De Souza MJ, Albrecht-Schulte K. et al. The influence of energy balance and availability on resting metabolic rate: Implications for assessment and future research directions. Sports Medicine 2023; 53: 1507-1526
  • 32 McGrosky A, Pontzer H. The fire of evolution: energy expenditure and ecology in primates and other endotherms. J Exp Biol 2023; 226: jeb245272
  • 33 Pontzer H, Wood BM, Raichlen DA. Hunter-gatherers as models in public health. Obes rev 2018; 19: 24-35
  • 34 Thurber C, Dugas LR, Ocobock C. et al. Extreme events reveal an alimentary limit on sustained maximal human energy expenditure. Sci Adv 2019; 5: eaaw0341
  • 35 Gurven M, Trumble BC, Stieglitz J. et al. High resting metabolic rate among Amazonian forager-horticulturalists experiencing high pathogen burden. American Journal of Physical Anthropology 2016; 16: 414-425
  • 36 Gonzales JT, Batterham AM, Atkinson G. et al. Is the Response of Human Energy Expenditure to Increased Physical Activity Additive or Constrained?. Advances in Nutrition 2023; 14: 406-419
  • 37 Müller MJ, Bosy-Westphal A. Adaptive thermogenesis with weight loss in humans. Obesity 2013; 21: 218-228
  • 38 Müller MJ, Heymsfield SB, Bosy-Westphal A. Changes in body composition and homeostatic control of resting energy expenditure during weight loss. Obesity 2023; 31: 892-895
  • 39 Rosenbaum M, Leibel RL. Models of energy homeostasis in response to maintenance of reduced body weight. Obesity 2016; 24: 1620-1629
  • 40 Hollstein T, Piaggi P. How can we assess “thrifty” and “spendthrift” phenotypes?. Curr Opin Clin Nutr Metab Care 2023; 26: 409-416
  • 41 Caudwell P, Gibbons C, Hopkins M. et al. The influence of physical activity on appetite control: an experimental system to understand the relationship between exercise-induced energy expenditure and energy intake. Proc Nutr Soc 2011; 70: 171-180
  • 42 Blundell JE, Gibbons C, Beaulieu K. et al. The drive to eat in homo sapiens: Energy expenditure drives energy intake. Physiol Behav 2020; 219: 112846
  • 43 Hägele FA, Büsing F, Nas A. et al. Appetite Control Is Improved by Acute Increases in Energy Turnover at Different Levels of Energy Balance. J Clin Endocrin Metab 2019; 104: 4481-4491
  • 44 Bosy-Westphal A, Hägele FA, Müller MJ. Impact of Energy Turnover on the Regulation of Energy and Macronutrient Balance. Obesity 2021; 29: 1114-1119
  • 45 Hengist A, Koumanov F, Gonzalez JT. Fructose and metabolic health: governed by hepatic glycogen status?. J Physiol 2019; 597: 3573-3585
  • 46 Mozaffarian D. Perspective: Obesity – an unexplained epidemic. Am J Clin Nutr 2022; 115: 1445-1450