Subscribe to RSS
DOI: 10.1055/a-2189-6453
Zerebrale Mikroangiopathien
Die zerebrale Mikroangiopathie wird zunehmend in der Bildgebung entdeckt. Nicht immer findet sich eine klinische Symptomatik, da einige Veränderungen im Rahmen des Alterungsprozesses auftreten und lange Zeit inapparent bleiben können. Dennoch ist das Risiko für einen Schlaganfall und eine Demenz erhöht. Dieser Beitrag gibt einen Überblick über die zerebrale Mikroangiopathie mit ihren häufigsten Formen und zeigt aktuelle Entwicklungen auf.
-
Zerebrale Mikroangiopathien gehören zu den häufigsten Ursachen des ischämischen Schlaganfalls und der vaskulären Demenz.
-
CADASIL ist in der klinischen Präsentation heterogener als gedacht mit zunehmender Beschreibung auch milder Verläufe.
-
Die Durchführung blutungssensitiver Sequenzen ist bei der zerebralen Mikroangiopathie wichtig, um das Blutungsrisiko abzuschätzen.
-
Bei der zerebralen Amyloidangiopathie sollten blutverdünnende Medikamente nach Nutzen-Risiken-Abwägung verabreicht werden – eine orale Antikoagulation sollte aufgrund der zerebralen Blutungsgefahr vermieden werden.
-
Therapeutisch wird die optimale Einstellung der vaskulären Risikofaktoren, insbesondere des Blutdrucks, empfohlen.
Schlüsselwörter
Schlaganfall - vaskuläre Demenz - CADASIL - zerebrale Amyloidangiopathie - MikroangiopathiePublication History
Article published online:
03 December 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
Literatur
- 1 Wardlaw JM, Smith C, Dichgans M. Small vessel disease: mechanisms and clinical implications. Lancet Neurol 2019; 18: 684-696
- 2 de Leeuw FE, de Groot JC, Achten E. et al. Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 2001; 70: 9-14
- 3 Wardlaw JM, Debette S, Jokinen H. et al. ESO Guideline on covert cerebral small vessel disease. Eur Stroke J 2021; 6: Cxi-clxii
- 4 Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ (Clinical research ed) 2010; 341: c3666
- 5 Duering M, Biessels GJ, Brodtmann A. et al. Neuroimaging standards for research into small vessel disease-advances since 2013. Lancet Neurol 2023; 22: 602-618
- 6 Staals J, Makin SD, Doubal FN. et al. Stroke subtype, vascular risk factors, and total MRI brain small-vessel disease burden. Neurology 2014; 83: 1228-1234
- 7 Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010; 9: 689-701
- 8 Bordes C, Sargurupremraj M, Mishra A. et al. Genetics of common cerebral small vessel disease. Nat Rev Neurol 2022; 18: 84-101
- 9 Greenberg SM, van Veluw SJ. Cerebral amyloid angiopathy. Stroke 2024; 55: 1409-1411
- 10 Charidimou A, Boulouis G, Frosch MP. et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study. Lancet Neurol 2022; 21: 714-725
- 11 Wollenweber FA, Opherk C, Zedde M. et al. Prognostic relevance of cortical superficial siderosis in cerebral amyloid angiopathy. Neurology 2019; 92: e792-e801
- 12 Sanchez-Caro JM, de Lorenzo Martínez de I Ubago, de Celis Ruiz E. et al. Transient focal neurological events in cerebral amyloid angiopathy and the long-term risk of intracerebral hemorrhage and death: a systematic review and meta-analysis. JAMA Neurol 2022; 79: 38-47
- 13 Greenberg SM, Bacskai BJ, Hernandez-Guillamon M. et al. Cerebral amyloid angiopathy and Alzheimer disease – one peptide, two pathways. Nat Rev Neurol 2020; 16: 30-42
- 14 Munsterman D, Falcione S, Long R. et al. Cerebral amyloid angiopathy and the immune system. Alzheimers Dement 2024; 20: 4999-5008
- 15 Kaushik K, van Etten ES, Siegerink B. et al. Iatrogenic cerebral amyloid angiopathy post neurosurgery: frequency, clinical profile, radiological features, and outcome. Stroke 2023; 54: 1214-1223
- 16 Chabriat H, Joutel A, Dichgans M. et al. Cadasil. Lancet Neurol 2009; 8: 643-653
- 17 Schon F, Martin RJ, Prevett M. et al. „CADASIL coma“: an underdiagnosed acute encephalopathy. J Neurol Neurosurg Psychiatry 2003; 74: 249-252
- 18 Hack RJ, Gravesteijn G, Cerfontaine MN. et al. Three-tiered EGFr domain risk stratification for individualized NOTCH3-small vessel disease prediction. Brain 2023; 146: 2913-2927
- 19 Rutten JW, Hack RJ, Duering M. et al. Broad phenotype of cysteine-altering NOTCH3 variants in UK Biobank: CADASIL to nonpenetrance. Neurology 2020; 95: e1835-e1843
- 20 Arima H, Tzourio C, Anderson C. et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke 2010; 41: 394-396
- 21 Salman RAS, Minks DP, Mitra D. et al. Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial. Lancet Neurol 2019; 18: 643-652
- 22 Shoamanesh A. ENRICH-AF Steering Committee. Anticoagulation in patients with cerebral amyloid angiopathy. Lancet 2023; 402: 1418-1419
- 23 Amarenco P, Bogousslavsky J, Callahan 3rd A. et al. High-dose atorvastatin after stroke or transient ischemic attack. N Engl J Med 2006; 355: 549-559
- 24 Prats-Sanchez L, Camps-Renom P, Nash PS. et al. Statin Therapy for Secondary Prevention in Ischemic Stroke Patients With Cerebral Microbleeds. Neurology 2024; 102: e209173
- 25 Álvarez-Sabín J, Maisterra O, Santamarina E. et al. Factors influencing haemorrhagic transformation in ischaemic stroke. Lancet Neurol 2013; 12: 689-705
- 26 Wardlaw JM, Woodhouse LJ, Mhlanga II. et al. Isosorbide mononitrate and cilostazol treatment in patients with symptomatic cerebral small vessel disease: the lacunar intervention trial-2 (LACI-2) randomized clinical trial. JAMA Neurol 2023; 80: 682-692
- 27 Webb AJS, Birks J, Feakins KA. et al. Cerebrovascular effects of sildenafil in small vessel disease: the OxHARP trial. Circ Res 2024; 135: 320-331
- 28 Shoamanesh A. Anticoagulation in patients with cerebral amyloid angiopathy. Lancet 2023; 402: 1418-1419
- 29 Abramovitz Fouks A, Yaghi S, Gokcal E. et al. Left atrial appendage closure for patients with atrial fibrillation at high intracranial haemorrhagic risk. Stroke Vasc Neurol 2024;
- 30 Webb AJ, Rothwell PM. Effect of dose and combination of antihypertensives on interindividual blood pressure variability: a systematic review. Stroke 2011; 42: 2860-2865
- 31 Webb AJS, Werring DJ. New insights into cerebrovascular pathophysiology and hypertension. Stroke 2022; 53: 1054-1064
- 32 Georgakis MK, Gill D, Webb AJS. et al. Genetically determined blood pressure, antihypertensive drug classes, and risk of stroke subtypes. Neurology 2020; 95: e353-e361
- 33 Kopczak A, Stringer MS, van den Brink H. et al. Effect of blood pressure-lowering agents on microvascular function in people with small vessel diseases (TREAT-SVDs): a multicentre, open-label, randomised, crossover trial. Lancet Neurol 2023; 22: 991-1004
- 34 Amarenco P, Labreuche J. Lipid management in the prevention of stroke: review and updated meta-analysis of statins for stroke prevention. Lancet Neurol 2009; 8: 453-463
- 35 Judge C, Ruttledge S, Costello M. et al. Lipid lowering therapy, low-density lipoprotein level and risk of intracerebral hemorrhage – a meta-analysis. J Stroke Cerebrovasc Dis 2019; 28: 1703-1709
- 36 Mosenzon O, Cheng AY, Rabinstein AA. et al. Diabetes and stroke: what are the connections?. J Stroke 2023; 25: 26-38
- 37 Cote S, Perron TL, Baillargeon JP. et al. Association of cumulative lifetime exposure to female hormones with cerebral small vessel disease in postmenopausal women in the UK Biobank. Neurology 2023; 101: e1970-e1978
- 38 Oliveira DV, Coupland KG, Shao W. et al. Active immunotherapy reduces NOTCH3 deposition in brain capillaries in a CADASIL mouse model. EMBO Mol Med 2023; 15: e16556
- 39 Hung C, Fertan E, Livesey FJ. et al. APP antisense oligonucleotides reduce Aβ aggregation and rescue endolysosomal dysfunction in Alzheimer's disease. Brain 2024; 147: 2325-2333
- 40 Brown RB, Tozer DJ, Loubière L. et al. MINocyclinE to reduce inflammation and blood-brain barrier leakage in small vessel diseAse (MINERVA): a phase II, randomized, double-blind, placebo-controlled experimental medicine trial. Alzheimers Dement 2024; 20: 3852-3863
- 41 Voigt S, Koemans EA, Rasing I. et al. Minocycline for sporadic and hereditary cerebral amyloid angiopathy (BATMAN): study protocol for a placebo-controlled randomized double-blind trial. Trials 2023; 24: 378