Subscribe to RSS
DOI: 10.1055/a-2192-4152
Technische Innovationen zur Optimierung der Ultraschallbildgebung
Technical innovations to optimize ultrasound imaging![](https://www.thieme-connect.de/media/lro/202404/lookinside/thumbnails/10-1055-a-2192-4152-1.jpg)
Zusammenfassung
Aufgrund der hohen Inzidenz von Schilddrüsenerkrankungen besitzt die Ultraschalluntersuchung des Halses in vielen nuklearmedizinischen Abteilungen einen hohen Stellenwert. Ein präzises Sonogramm mit hoher Ortsauflösung und Bildschärfe über den gesamten Abbildungsbereich bei gleichzeitig minimaler Artefaktbelastung, ist die Voraussetzung, um dem Anspruch hoher diagnostischer Genauigkeit in der modernen Medizin gerecht zu werden. In den letzten 20–30 Jahren konnte eine Vielzahl wegweisender technischer Innovationen, wie die Entwicklung des Matrix-Arrays, die elektronische Bildfokussierung, die multidirektionale Abstrahlung, die Artefaktlimitation durch Speckle-Reduktion und Harmonic Imaging sowie die Möglichkeit der Sichtfelderweiterung, umgesetzt werden.
Abstract
Due to the high incidence of thyroid disease, ultrasound examination of the neck has high priority in many nuclear medicine departments. A precise sonogram with high spatial resolution and image sharpness over the entire imaging area, combined with minimal artifacts, is the prerequisite for meeting the demand for high diagnostic accuracy in modern medicine. In the last 20–30 years, a number of significant technical innovations have been implemented, such as the development of the matrix array, electronic image focusing, realtime compound imaging, artifact limitation by speckle reduction and harmonic imaging, as well as the possibility to extend the field of view.
Keywords
ultrasound - spatial resolution - frequency - field of view - slice thickness - matrix arrayPublication History
Article published online:
13 November 2023
© 2023. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Fei DY, Shung KK. Ultrasonic backscatter from mammalian tissues. J Acoust Soc Am 1985; 78: 871-876
- 2 Ludwig GD. The Velocity of Sound through Tissues and the Acoustic Impedance of Tissues. J Acoust Soc Am 1950; 22: 862-866
- 3 Wells PNT. Biomedical Ultrasonics. London: Academic Press; 1977. 120–135
- 4 Goss SA, Johnston RL, Dunn F. Compilation of empirical ultrasonic properties of mammalian tissues. J Acoust Soc 1980; 68: 93-108
- 5 Kuttroff H. Physik und Technik des Ultraschalls. Stuttgart: Hirzel; 1988. 82–120
- 6 Li J-F. Fundamentals of Piezoelectricity. In: Lead-Free Piezoelectric Materials. 1. Auflage. Weinheim: Wiley-VCH; 2021. ISBN: 978-3-527-34512-0
- 7 Wells PNT. Ultrasonic imaging of the human body. Rep Prog Phys 1999; 62: 685-692
- 8 Habermehl A, Hackelöer BJ. Physikalische und technische Grundlagen der Sonographie. Dtsch Arztebl 1983; 80: 43-68
- 9 Dudwiesus H. Physikalische und technische Grundlagen der Ultraschalldiagnostik. et al. In: Deeg KH, Peters H, Schumacher R. Die Ultraschalluntersuchung des Kindes. Berlin, Heidelberg: Springer; 1997: 1-36
- 10 Abbey CK, Nguyen NQ, Insana MF. Effects of frequency and bandwidth on diagnostic information transfer in ultrasonic B-mode imaging. IEEE Trans Ultrason Ferroelectr Freq Control 2012; 59: 1115-1126
- 11 Kuttroff H. Physik und Technik des Ultraschalls. Stuttgart: Hirzel; 1988. 66–71
- 12 Chester F. Carlson Center for Imaging Science, RIT/Blair L, Rao NAHK, Helguera M et al. Experimental Measurement of Ultrasound Beam Profiles. 2003 Accessed December 15, 2022 at: www.cis.rit.edu/info/IA_S2003_talks/Blair_talk.pdf
- 13 Wittingham T, Martin K. Chapter 3 Transducer and Beamforming. In: Hoskins P, Martin K, Thrush A. Diagnostic ultrasound Physics and equipment. 2nd ed. 2010. Cambridge: Cambridge university press; 23-46
- 14 Kremkau FW. Your New Paradigm for Understanding and Applying Sonographic Principles. JDMS 2019; 35: 439-446
- 15 Baun J. Advances in Ultrasound Imaging Architecture: The Future Is Now. JDMS 2021; 37: 312-314
- 16 Goldstein A, Madrazo B. Slice-thickness artifact in gray-scale ultrasound. JCU 1981; 9: 365-375
- 17 Wildes D, Chiao R, Daft Ch. et al. Elevation performance of 1.25D and 1.5D transducer arrays. IEEE transactions on ultrasonics, ferroelectrics, and frequency control 1997; 44: 1027-1037
- 18 Pochhammer KF, Dudwiesus H, Hollstein H. et al. Sonographische Artefakte an rundlichen Reflektoren. Ultraschall in Med 1984; 5: 70-73
- 19 Kuttroff H. Physik und Technik des Ultraschalls. Stuttgart: Hirzel; 1988. 33–38
- 20 Schmidt T, Hohl C, Haage P. et al. Diagnostic accuracy of phase-inversion tissue harmonic imaging versus fundamental B-mode sonography in the evaluation of focal lesions of the kidney. AJR Am J Roentgenol 2003; 180: 1639-1647
- 21 Anvari A, Forsberg F, Samir AE. A Primer on the Physical Principles of Tissue Harmonic Imaging. Radiographics 2015; 35: 1955-1964
- 22 Burckhardt CB. Speckle in ultrasound B-mode scans. IEEE Transactions on Sonics and Ultrasonics 1978; 25: 1-6
- 23 Milkowski A, Yadong L, David B. et al. Speckle Reduction Imaging. 2003. General Electric Company;
- 24 Abd-Elmoniem KZ, Youssef A, Kadah YM. Real-time speckle reduction and coherence enhancement in ultrasound imaging via nonlinear anisotropic diffusion. IEEE Transactions on Biomedical Engineering 2002; 49: 997-1014
- 25 Michailovich OV, Tannenbaum A. Despeckling of medical ultrasound images. IEEE Trans Ultrason Ferroelectr Freq Control 2006; 53: 64-78
- 26 Hedrick WR, Hykes DL. Beam Steering and Focusing With Linear Phased Arrays. JDMS 1996; 12: 211-215
- 27 Berson M, Roncin A, Pourcelot L. Compound Scanning with an Electrical Steered Beam. Ultrasonic Imaging 1981; 3: 303-308
- 28 Jespersen SK, Wilhjelm JE, Sillesen H. Multi-Angle Compound Imaging. Ultrasonic Imaging 1998; 20: 81-102
- 29 Beissert M, Jenett M, Kellner M. et al. Panoramabildverfahren SieScape in der radiologischen Diagnostik. Radiologe 1998; 38: 410-416
- 30 Barr RG. Improved needle visualization with electronic beam steering: proof of concept. Ultrasound Q 2012; 28: 59-64