Subscribe to RSS
DOI: 10.1055/a-2192-8043
Verletzungen der subaxialen Halswirbelsäule
Injuries to the Subaxial Cervical SpineZusammenfassung
Die untere Halswirbelsäule (HWS) ist anfällig für Verletzungen, die 2,5–5% aller knöchernen Verletzungen ausmachen. Statistiken zeigen, dass 20–50% aller Wirbelsäulenverletzungen die HWS betreffen, wobei 50–70% auf die untere HWS entfallen. In Deutschland gab es 2018 rund 11.528 stationäre Behandlungen aufgrund von Halswirbelsäulenfrakturen, mit steigender Tendenz.
Rückenmarkverletzungen bei HWS-Verletzungen treten mit etwa 10–12% auf, wobei das Risiko im Vergleich zu Brust- und Lendenwirbelverletzungen dreifach höher ist. Sportliche Aktivitäten, Verkehrsbeteiligung und Stürze über 2 m Höhe erhöhen das Risiko signifikant.
Begleitverletzungen sind in bis zu 80% der Fälle vorhanden und betreffen andere Wirbelsäulenabschnitte, Schädel-Hirn-Trauma und Extremitäten. Die Segmente C5–6 und C6–7 sind am häufigsten betroffen.
Die AO Spine-Klassifikation für subaxiale HWS-Verletzungen, eingeführt 2015, berücksichtigt Facettenverletzungen und neurologischen Status. Diagnostisch ist die Canadian-C-Spine-Rule relevant, während die CT für die primäre HWS-Bildgebung bevorzugt wird.
Therapieoptionen umfassen konservative Ansätze für nicht dislozierte Frakturen, während operative Eingriffe, ventral oder dorsal, bei instabilen Verletzungen erforderlich sind. Die Wahl der Therapie hängt von verschiedenen Faktoren ab, darunter die Art der Verletzung und der neurologische Status.
Die Prognose nach HWS-Verletzungen variiert je nach Grad der neurologischen Beteiligung. Ohne Rückenmarkverletzung erzielen die meisten Patienten gute Ergebnisse, während Rückenmarkverletzungen die Lebensqualität negativ beeinflussen. Die Rückkehr in den Beruf gelingt in vielen Fällen, und radikuläre Läsionen heilen häufig symptomfrei aus. Relevante Nackenschmerzen sind jedoch in etwa 20% der Fälle nach 2,5 Jahren zu verzeichnen.
Abstract
The lower cervical spine is susceptible to injuries, constituting 2.5–5% of all bony injuries. Statistics reveal that 20–50% of all spinal injuries involve the cervical spine, with 50–70% affecting the lower cervical spine. In Germany, there were approximately 11,528 inpatient treatments for cervical spine fractures in 2018, with an increasing trend.
Spinal cord injuries in cervical spine injuries occur at about 10–12%, with the risk being three times higher compared to thoracic and lumbar spine injuries. Sports activities, participation in traffic, and falls from heights over 2 meters significantly increase the risk.
Associated injuries are present in up to 80% of cases and affect other spinal segments, skull-brain trauma, and extremities. Segments C5–6 and C6–7 are most commonly affected.
The AO Spine classification for subaxial cervical spine injuries, introduced in 2015, considers facet injuries and neurological status. Diagnostically, the Canadian C-Spine Rule is relevant, while CT is preferred for primary cervical spine imaging.
Therapeutic options include conservative approaches for non-dislocated fractures, while operative interventions, either ventral or dorsal, are necessary for unstable injuries. The choice of therapy depends on various factors, including the type of injury and neurological status.
The prognosis after cervical spine injuries varies based on the degree of neurological involvement. Without spinal cord injury, most patients achieve good results, while spinal cord injuries negatively impact quality of life. Returning to work is successful in many cases, and radicular lesions often heal symptom-free. However, relevant neck pain is observed in approximately 20% of cases after 2.5 years.
Publication History
Article published online:
16 April 2024
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Goldberg W, Mueller C, Panacek E. et al. Distribution and patterns of blunt traumatic cervical spine injury. Ann Emerg Med 2001; 38: 17-21
- 2 Hasler RM, Exadaktylos AK, Bouamra O. et al. Epidemiology and predictors of cervical spine injury in adult major trauma patients. J Trauma Acute Care Surg [Internet] 2012; 72: 975-981
- 3 Leucht P, Fischer K, Muhr G. et al. Epidemiology of traumatic spine fractures. Inj 2009; 40: 166-72
- 4 Ouden LP den, Smits AJ, Stadhouder A. et al. Epidemiology of Spinal Fractures in a Level One Trauma Center in the Netherlands: A 10 Years Review. Spine 2019; 44: 732-9
- 5 Lenehan B, Boran S, Street J. et al. Demographics of acute admissions to a National Spinal Injuries Unit. Eur Spine J 2009; 18: 938-942
- 6 Smits AJ, Ouden LP den, Deunk J. et al. Incidence of Traumatic Spinal Fractures in the Netherlands: Analysis of a Nationwide Database. Spine 2020; 45: 1639-48
- 7 Passias PG, Poorman GW, Segreto FA. et al. Traumatic Fractures of the Cervical Spine: Analysis of Changes in Incidence, Etiology, Concurrent Injuries and Complications Among 488,262 Patients from 2005–2013. World Neurosurg 2017; 110: e427-37
- 8 Vaccaro AR, Koerner JD, Radcliff KE. et al. AOSpine subaxial cervical spine injury classification system. Eur Spine J 2016; 25: 2173-2184
- 9 Utheim NC, Helseth E, Stroem M. et al. Epidemiology of traumatic cervical spinal fractures in a general Norwegian population. Inj Epidemiology 2022; 9: 10
- 10 Stiell IG, Wells GA, Vandemheen KL. et al. The Canadian C-spine rule for radiography in alert and stable trauma patients. JAMA: the journal of the American Medical Association [Internet] 2001; 286: 1841-1848
- 11 Stiell IG, Clement CM, McKnight RD. et al. The Canadian C-spine rule versus the NEXUS low-risk criteria in patients with trauma. New Engl J Medicine 2003; 349: 2510-2518
- 12 Holmes JF, Akkinepalli R. Computed Tomography Versus Plain Radiography to Screen for Cervical Spine Injury: A Meta-Analysis. J Trauma Inj Infect Critical Care 2005; 58: 902-905
- 13 Middendorp JJ van, Cheung I, Dalzell K. et al. Detecting Facet Joint and Lateral Mass Injuries of the Subaxial Cervical Spine in Major Trauma Patients. Asian Spine J 2014; 9: 327-37
- 14 Bailitz J, Starr F, Beecroft M. et al. CT Should Replace Three-View Radiographs as the Initial Screening Test in Patients at High, Moderate, and Low Risk for Blunt Cervical Spine Injury: A Prospective Comparison. J Trauma Inj Infect Critical Care [Internet] 2009; 66: 1605-1609
- 15 Fisher A, Young WF. Is the lateral cervical spine x-ray obsolete during the initial evaluation of patients with acute trauma?. Surg Neurol 2008; 70: 53 57
- 16 Fisher BM, Cowles S, Matulich JR. et al. Is magnetic resonance imaging in addition to a computed tomographic scan necessary to identify clinically significant cervical spine injuries in obtunded blunt trauma patients?. Am J Surg 2013; 206: 987-93
- 17 Malham GM, Ackland HM, Varma DK. et al. Traumatic cervical discoligamentous injuries: correlation of magnetic resonance imaging and operative findings. Spine 2009; 34: 2754-2759
- 18 McCracken B, Klineberg E, Pickard B. et al. Flexion and extension radiographic evaluation for the clearance of potential cervical spine injures in trauma patients. Eur Spine J [Internet] 2013; 22: 1467-1473
- 19 Padayachee L, Cooper DJ, Irons S. et al. Cervical Spine Clearance in Unconscious Traumatic Brain Injury Patients: Dynamic Flexion-Extension Fluoroscopy versus Computed Tomography with Three-Dimensional Reconstruction. J Trauma Inj Infect Critical Care 2006; 60: 341-345
- 20 Oh JJ, Asha SE, Curtis K. Diagnostic accuracy of flexion - extension radiography for the detection of ligamentous cervical spine injury following a normal cervical spine computed tomography. Emerg Med Australas 2016; 28: 450-5
- 21 Spector LR, Kim DH, Affonso J. et al. Use of computed tomography to predict failure of nonoperative treatment of unilateral facet fractures of the cervical spine. Spine [Internet] 2006; 31: 2827 2835
- 22 Pehler S, Jones R, Staggers JR. et al. Clinical Outcomes of Cervical Facet Fractures Treated Nonoperatively With Hard Collar or Halo Immobilization. Global Spine J 2018; 9: 48-54
- 23 Manoso MW, Moore TA, Agel J. et al. Floating Lateral Mass Fractures of the Cervical Spine. Spine [Internet] 2016; 41: 1421-1427
- 24 Tang C, Fan YH, Liao YH. et al. Classification of unilateral cervical locked facet with or without lateral mass-facet fractures and a retrospective observational study of 55 cases. Sci Rep 2021; 11: 16615
- 25 Willis BK, Greiner F, Orrison WW. et al. The Incidence of Vertebral Artery Injury after Midcervical Spine Fracture or Subluxation. Neurosurgery 1994; 34: 435-42
- 26 Merrill S, Clifton W, Valero-Moreno F. et al. Vertebral Artery Injury with Coinciding Unstable Cervical Spine Trauma: Mechanisms, Evidence-based Management, and Treatment Options. Cureus 2020; 12: e7225
- 27 Lauweryns P. Role of conservative treatment of cervical spine injuries. Eur Spine J [Internet] 2009; 19 (Suppl. 01) 236-26
- 28 Schleicher P, Scholz M, Kandziora F. et al. Subaxial Cervical Spine Injuries: Treatment Recommendations of the German Orthopedic and Trauma Society. Zeitschrift Für Orthopädie Und Unfallchirurgie 2017; 155: 556-566
- 29 Holla M, Huisman JMR, Verdonschot N. et al. The ability of external immobilizers to restrict movement of the cervical spine: a systematic review. Eur Spine J [Internet] 2016; 25: 2023 2036
- 30 Koller H, Zenner J, Hitzl W. et al. In vivo analysis of atlantoaxial motion in individuals immobilized with the halo thoracic vest or Philadelphia collar. Spine [Internet] 2009; 34: 670-679
- 31 Garfin SR, Botte MJ, Waters RL. et al. Complications in the use of the halo fixation device. The Journal of Bone & Joint 1986; 68: 320-325
- 32 Isidro S, Molinari R, Ikpeze T. et al. Outcomes of Halo Immobilization for Cervical Spine Fractures. Glob Spine J 2019; 9: 521-6
- 33 Ren C, Qin R, Wang P. et al. Comparison of anterior and posterior approaches for treatment of traumatic cervical dislocation combined with spinal cord injury: Minimum 10-year follow-up. Sci Rep 2020; 10: 10346
- 34 Fountas KN, Kapsalaki EZ, Nikolakakos LG. et al. Anterior cervical discectomy and fusion associated complications. Spine 2007; 32: 2310-2317
- 35 Nanda A, Sharma M, Sonig A. et al. Surgical Complications of Anterior Cervical Diskectomy and Fusion for Cervical Degenerative Disk Disease: A Single Surgeon’s Experience of 1576 Patients. World Neurosurg 2014; 82: 1380-7
- 36 Kwon BK, Fisher CG, Boyd MC. et al. A prospective randomized controlled trial of anterior compared with posterior stabilization for unilateral facet injuries of the cervical spine. J Neurosurg Spine 2007; 7: 1-12
- 37 Govindarajan V, Bryant JP, Perez-Roman RJ. et al. The role of an anterior approach in the treatment of ankylosing spondylitis–associated cervical fractures: a systematic review and meta-analysis. Neurosurg Focus 2021; 51: E9
- 38 Pitzen T, Lane C, Goertzen D. et al. Anterior cervical plate fixation: biomechanical effectiveness as a function of posterior element injury. J Neurosurg: Spine 2003; 99: 84-90
- 39 Henriques T, Olerud C, Bergman A. et al. Distractive Flexion Injuries of the Subaxial Cervical Spine Treated With Anterior Plate Alone. J Spinal Disord Tech 2004; 17: 1-7
- 40 Kim SM, Lim TJ, Paterno J. et al. A biomechanical comparison of three surgical approaches in bilateral subaxial cervical facet dislocation. J Neurosurg: Spine 2004; 1: 108-15
- 41 Lee DY, Park YJ, Song MG. et al. Comparison of anterior-only versus combined anterior and posterior fusion for unstable subaxial cervical injuries: a meta-analysis of biomechanical and clinical studies. Eur Spine J 2021; 30: 1460-73
- 42 Yoshihara H, Passias PG, Errico TJ. Screw-related complications in the subaxial cervical spine with the use of lateral mass versus cervical pedicle screws: a systematic review. J Neurosurg Spine 2013; 19: 614-623
- 43 Kothe R, Rüther W, Schneider E. et al. Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 2004; 29: 1869-1875
- 44 Johnston TL, Karaikovic EE, Lautenschlager EP. et al. Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 2006; 6: 667-672
- 45 Jones EL, Heller JG, Silcox DH. et al. Cervical Pedicle Screws Versus Lateral Mass Screws. Spine 1997; 22: 977-82
- 46 Kotani Y, Cunningham BW, Abumi K. et al. Biomechanical Analysis of Cervical Stabilization Systems. SPINE 1994; 19: 2529-39
- 47 Kast E, Mohr K, Richter HP. et al. Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 2006; 15: 327 334
- 48 Ludwig SC, Kramer DL, Balderston RA. et al. Placement of Pedicle Screws in the Human Cadaveric Cervical Spine. Spine 2000; 25: 1655-67
- 49 Soliman MAR, Aguirre AO, Khan S. et al. Complications associated with subaxial placement of pedicle screws versus lateral mass screws in the cervical spine (C2–T1): systematic review and meta-analysis comprising 4,165 patients and 16,669 screws. Neurosurg Rev 2023; 46: 61
- 50 Soliman MAR, Khan S, Ruggiero N. et al. Complications associated with subaxial placement of pedicle screws versus lateral mass screws in the cervical spine: systematic review and meta-analysis comprising 1768 patients and 8636 screws. Neurosurg Rev 2022; 45: 1941-50
- 51 Schleicher P, Kobbe P. S1-Leitlinie Verletzungen der subaxialen Halswirbelsäule (AWMF-Nr. 012–032) [Internet]. 2017 [cited 2020 Jan 2].
- 52 Schleicher P, Kobbe P, Kandziora F. et al. Treatment of Injuries to the Subaxial Cervical Spine: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J 2018; 8 (Suppl. 02) 25S-33S
- 53 Caravaggi P, Chen L, Uko L. et al. Kinematics of the Cervical Spine After Unilateral Facet Fracture: An In Vitro Cadaver Study. Spine 2017; 4: E1042 E1049
- 54 Eck CF van, Fourman MS, Abtahi AM. et al. Risk Factors for Failure of Nonoperative Treatment for Unilateral Cervical Facet Fractures. Asian Spine J 2017; 11: 356 364
- 55 Chaput C, Haile NB, Muzumdar AM. et al. Anterior Fixation of Floating Facet Fractures in the Cervical Spine: A Prospective Case Series and Biomechanical Analysis. Int J Spine Surg 2018; 12: 85-91
- 56 Lee SH, Sung JK. Unilateral Lateral Mass-Facet Fractures With Rotational Instability: New Classification and A Review of 39 Cases Treated Conservatively and With Single Segment Anterior Fusion. J Trauma Inj Infect Critical Care [Internet] 2009; 66: 758-767
- 57 Prezelski K, Simon KN, Nwadike BA. et al. Assessing Treatment of Floating Lateral Mass (FLM) Fractures of the Subaxial Cervical Spine. Spine 2024; 49: 29-33
- 58 Karamian BA, Schroeder GD, Holas M. et al. Variation in global treatment for subaxial cervical spine isolated unilateral facet fractures. Eur Spine J 2021; 30: 1635-50
- 59 Canseco JA, Schroeder GD, Patel PD. et al. Regional and experiential differences in surgeon preference for the treatment of cervical facet injuries: a case study survey with the AO Spine Cervical Classification Validation Group. Eur Spine J 2021; 30: 517-23
- 60 Reindl R, Ouellet J, Harvey EJ. et al. Anterior reduction for cervical spine dislocation. Spine 2006; 31: 648-652
- 61 Botelho RV, Bertolini E de F, Barcelos ACES. et al. The surgical treatment of subaxial acute cervical spine facet dislocations in adults: a systematic review and meta-analysis. Neurosurg Rev 2022; 45: 2659-69
- 62 Jonayed S, Choudhury AAM, Alam MdS. et al. Efficacy, Safety, and Reliability of the Single Anterior Approach for Subaxial Cervical Spine Dislocation. Cureus 2023; 15: e34787
- 63 Hart RA. Cervical facet dislocation: when is magnetic resonance imaging indicated?. Spine 2002; 27 (01) 116-117
- 64 Darsaut TE, Ashforth R, Bhargava R. et al. A Pilot Study of Magnetic Resonance Imaging-Guided Closed Reduction of Cervical Spine Fractures. Spine 2006; 31: 2085-90
- 65 Onishi FJ, Daniel JW, Joaquim AF. et al. The impact of traumatic herniated discs in cervical facets dislocations treatments: systematic review and meta-analysis. Eur Spine J 2022; 31: 2664-74
- 66 Zhou Y, Zhou Z, Liu L. et al. Management of irreducible unilateral facet joint dislocations in subaxial cervical spine: two case reports and a review of the literature. J Méd Case Rep 2018; 12: 74
- 67 Elsissy J, Kutzner A, Danisa O. Delayed Diagnosis and Management of Traumatic Cervical Spine Subluxation. J Orthop Case Rep 2019; 9: 84-7
- 68 Jain M, Khuntia S, Rao B. Neglected bilateral facet dislocation of the cervical spine with intact neurology: Reduction technique. Asian J Neurosurg 2020; 15 (03) 773-6
- 69 Korovessis P, Mpountogianni E, Syrimpeis V. et al. Quality of Life in Adult Patients Receiving Cervical Fusion for Fresh Subaxial Cervical Injury: The Role of Associated Spinal Cord Injury. BioMed Res Int 2021; 2021: 9931535
- 70 Koller H, Reynolds J, Zenner J. et al. Mid- to long-term outcome of instrumented anterior cervical fusion for subaxial injuries. Eur Spine J [Internet] 2009; 18: 630-653
- 71 Fredø HL, Rizvi SAM, Rezai M. et al. Complications and long-term outcomes after open surgery for traumatic subaxial cervical spine fractures: a consecutive series of 303 patients. Bmc Surg 2016; 16: 1-12