Subscribe to RSS
DOI: 10.1055/a-2194-4896
Diffuse idiopathic skeletal hyperostosis in an 83-year-old female body donor with osteoporosis – protection or risk for the occurrence of insufficiency fractures of the spine?
Die diffuse idiopathische skelettale Hyperostose einer 83-jährigen Körperspenderin mit Osteoporose – Schutz oder Risiko für das Auftreten von Insuffizienzfrakturen der Wirbelsäule?Zusammenfassung
Einleitung Die vorliegende Studie hatte das Ziel, Erkenntnisse über Veränderungen in der Knochendichte und der kortikalen Dicke bei Patienten mit diffuser idiopathischer skelettaler Hyperostose (DISH) und Osteoporose zu gewinnen, um das Verständnis für Risikobereiche für das Auftreten von Insuffizienzfrakturen am Achsenskelett zu verbessern.
Fallbeschreibung und Ergebnisse Eine weibliche 83-Jährige Körperspenderin mit DISH und Osteoporose wurde mittels CT/QCT- sowie Mikro-CT-Bildgebung untersucht. Die kortikale Dicke wurde an den Endplatten und der kortikalen Schale von 15 Wirbelkörpern an 1800 Messpunkten ermittelt, um Unterschiede zwischen den Wirbelsäulen Abschnitten festzustellen. Alle erhobenen Daten wurden mit dem Softwarepaket SPSS, Version 24.0 (Armonk, New York: IBM Corp., USA) analysiert. Es zeigte sich eine signifikant höhere kortikale Dicke in der Brustwirbelsäule im Vergleich zur Hals- (p=0,001) und Lendenwirbelsäule (p<0,001). Die Kortikalisdicke ist an der Hinterkante in den verschiedenen Abschnitten am geringsten ausgeprägt. Der spongiöse Knochenmineralgehalt steigt in den von DISH betroffenen Wirbelkörpern an. Obwohl die Halswirbelsäule nicht von DISH betroffen war, fand sich dort die höchste Knochendichte der gesamten Wirbelsäule.
Schlussfolgerungen Die signifikant höhere kortikale Dicke und der erhöhte spongiöse Knochenmineralgehalt in der Brustwirbelsäule bei DISH könnte auf eine erhöhte Stabilität und ein geringeres Frakturrisiko in diesem Bereich hinweisen. Die hohe Knochendichte im HWS-Bereich scheint auch bei vorliegender Osteoporose am Achsenskelett einen kritischen Frakturschwellenwert nicht zu unterschreiten.
Abstract
Introduction The present study aimed to gain insights into changes in bone density and cortical thickness in patients with diffuse idiopathic skeletal hyperostosis (DISH) and osteoporosis, in order to improve understanding of risk areas for the occurrence of insufficiency fractures in the axial skeleton.
Case Description and Results An 83-year-old female body donor with DISH and osteoporosis was examined using CT/QCT and micro-CT imaging. Cortical thickness was determined at the endplates and cortical shell of 15 vertebral bodies at 1800 measurement points to identify differences between spinal sections. All collected data were analyzed using the SPSS software package, version 24.0 (Armonk, New York: IBM Corp., USA). A significantly higher cortical thickness was observed in the thoracic spine compared to the cervical (p=0.001) and lumbar spine (p<0.001). Cortical thickness is least pronounced at the posterior edge in the different sections. The trabecular bone mineral content increases in the affected vertebral bodies in DISH. Although the cervical spine was not affected by DISH, it exhibited the highest bone density among the entire spine.
Conclusions The significantly higher cortical thickness and increased trabecular bone mineral content in the thoracic spine in DISH may indicate increased stability and a lower fracture risk in this area. The high bone density in the cervical spine region also does not seem to fall below a critical fracture threshold, even in the presence of osteoporosis in the axial skeleton.
Schlüsselwörter
Computertomografie - diffuse idiopathische Skeletthyperostose - Knochenmineralgehalt - Kortikalisdicke - Mikro-CTKeywords
Computed tomography - diffuse idiopathic skeletal hyperostosis - bone mineral content - cortical thickness - micro-CTPublication History
Received: 09 July 2023
Accepted: 16 October 2023
Article published online:
20 November 2023
© 2024. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Artner J, Leucht F, Cakir B. et al. [Diffuse idiopathic skeletal hyperostosis. Current aspects of diagnostics and therapy]. Article in German. Der Orthopäde 2012; 41: 916-922
- 2 FORESTIER J, ROTES-QUEROL J. Senile ankylosing hyperostosis of the spine. Ann Rheum Dis 1950; 9: 321-330
- 3 Resnick D, Shaul SR, Robins JM. Diffuse idiopathic skeletal hyperostosis (DISH): Forestier’s disease with extraspinal manifestations. Radiology 1975; 115: 513-524
- 4 Sarzi-Puttini P, Atzeni F. New developments in our understanding of DISH (diffuse idiopathic skeletal hyperostosis). Curr Opin Rheumatol 2004; 16: 287-292
- 5 Weinfeld RM, Olson PN, Maki DD. et al. The prevalence of diffuse idiopathic skeletal hyperostosis (DISH) in two large American Midwest metropolitan hospital populations. Skeletal Radiol 1997; 26: 222-225
- 6 Kuperus JS, Mohamed Hoesein FAA, de Jong PA. et al. Diffuse idiopathic skeletal hyperostosis: Etiology and clinical relevance. Best Pract Res Clin Rheumatol 2020; 34: 101527
- 7 Bruges-Armas J, Couto AR, Timms A. et al. Ectopic calcification among families in the Azores: clinical and radiologic manifestations in families with diffuse idiopathic skeletal hyperostosis and chondrocalcinosis. Arthritis Rheum 2006; 54: 1340-1349
- 8 Gorman C, Jawad ASM, Chikanza I. A family with diffuse idiopathic skeletal hyperostosis. Ann Rheum Dis 2005; 64: 1794-1795
- 9 Tsukahara S, Miyazawa N, Akagawa H. et al. COL6A1, the candidate gene for ossification of the posterior longitudinal ligament, is associated with diffuse idiopathic skeletal hyperostosis in Japanese. Spine (Phila Pa 1976) 2005; 30: 2321-2324
- 10 Jun J-K, Kim S-M. Association study of fibroblast growth factor 2 and fibroblast growth factor receptors gene polymorphism in korean ossification of the posterior longitudinal ligament patients. J Korean Neurosurg Soc 2012; 52: 7-13
- 11 Resnick D, Niwayama G. Radiographic and pathologic features of spinal involvement in diffuse idiopathic skeletal hyperostosis (DISH). Radiology 1976; 119: 559-568
- 12 Verlaan J-J, Boswijk PFE, de Ru JA. et al. Diffuse idiopathic skeletal hyperostosis of the cervical spine: an underestimated cause of dysphagia and airway obstruction. Spine J 2011; 11: 1058-1067
- 13 Hammer N, Voigt C, Werner M. et al. Ethanol and formaldehyde fixation irreversibly alter bones’ organic matrix. J Mech Behav Biomed Mater 2014; 29: 252-258
- 14 Andresen R, Radmer S, Banzer D. et al. [Quantitative determination of bonc mineral content (QCT) - Inter- comparison of Computer tomographs of the Same construction]. Article in German. RöFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 1994; 160: 260-265
- 15 Genant HK, Wu CY, van Kuijk C. et al. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993; 8: 1137-1148
- 16 Buenger F, Eckardt N, Sakr Y. et al. Correlation of Bone Density Values of Quantitative Computed Tomography and Hounsfield Units Measured in Native Computed Tomography in 902 Vertebral Bodies. World Neurosurg 2021; 151: e599-e606
- 17 Apovian CM. Obesity: definition, comorbidities, causes, and burden. Am J Manag Care 2016; 22: s176-s185
- 18 Mader R, Verlaan J-J, Buskila D. Diffuse idiopathic skeletal hyperostosis: clinical features and pathogenic mechanisms. Nat Rev Rheumatol 2013; 9: 741-750
- 19 Engelke K, Adams JE, Armbrecht G. et al. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: the 2007 ISCD Official Positions. J Clin Densitom 2008; 11: 123-162
- 20 Andresen R, Radmer S, Banzer D. Bone mineral density and spongiosa architecture in correlation to vertebral body insufficiency fractures. Acta Radiol 1998; 39: 538-542
- 21 Bässgen K, Westphal T, Haar P. et al. Population-based prospective study on the incidence of osteoporosis-associated fractures in a German population of 200,413 inhabitants. J Public Health (Oxf) 2013; 35: 255-261
- 22 Schröder G, Flachsmeyer D, Kullen CM. et al. Insufficiency fractures of the spine in relation to cancellous bone density. An in vitro study. Article in German. Orthopädie (Heidelberg, Germany) 2022; 51: 547-555
- 23 Schröder G, Baginski AM, Schulze M. et al. Regional variations in the intra- and intervertebral trabecular microarchitecture of the osteoporotic axial skeleton. Anat Sci Int 2023;
- 24 Sohn S, Chung CK, Han I. et al. Increased Bone Mineral Density in Cervical or Thoracic Diffuse Idiopathic Skeletal Hyperostosis (DISH): A Case-Control Study. J Clin Densitom 2018; 21: 68-74
- 25 Andresen R, Lenchik L, Brossmann J. et al. Bone mineral density (BMD) and fracture frequency in diffuse idiopathic skeletal hyperostosis (DISH). Eur Radiol 1997; 7: 390
- 26 Diederichs G, Engelken F, Marshall LM. et al. Diffuse idiopathic skeletal hyperostosis (DISH): relation to vertebral fractures and bone density. Osteoporos Int 2011; 22: 1789-1797
- 27 Ritzel H, Amling M, Pösl M. et al. The thickness of human vertebral cortical bone and its changes in aging and osteoporosis: a histomorphometric analysis of the complete spinal column from thirty-seven autopsy specimens. J Bone Miner Res 1997; 12: 89-95
- 28 Ritzel H, Amling M, Hahn M. et al. [Quantitative morphology of vertebral body cortical bone. Building block for noninvasive calculation of fracture threshold in osteoporosis]. Article in German. Radiologe 1998; 38: 315-320
- 29 Silva MJ, Wang C, Keaveny TM. et al. Direct and computed tomography thickness measurements of the human, lumbar vertebral shell and endplate. Bone 1994; 15: 409-414
- 30 Vesterby A, Mosekilde L, Gundersen HJ. et al. Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 1991; 12: 219-224
- 31 Banzer D, Fabian C, Andresen R. et al [Bone density of spongiosa and cortical bone of the lumbar spine. Relations to sex, age and spinal deformities in a regional collective of the European Study of Vertebral Osteoporosis (EVOS)]. Article in German. Med Klin (Munich) 1998; 93: 56-62 64-5
- 32 Andresen R, Werner HJ, Schober HC. Contribution of the cortical shell of vertebrae to mechanical behaviour of the lumbar vertebrae with implications for predicting fracture risk. Br J Radiol 1998; 71: 759-765
- 33 Caron T, Bransford R, Nguyen Q. et al. Spine fractures in patients with ankylosing spinal disorders. Spine (Phila Pa 1976) 2010; 35: 64
- 34 Westerveld LA, van Bemmel JC, Dhert WJA. et al. Clinical outcome after traumatic spinal fractures in patients with ankylosing spinal disorders compared with control patients. Spine J 2014; 14: 729-740
- 35 Jacobs WB, Fehlings MG. Ankylosing spondylitis and spinal cord injury: origin, incidence, management, and avoidance. Neurosurg Focus 2008; 24: E12
- 36 Campagna R, Pessis E, Feydy A. et al. Fractures of the ankylosed spine: MDCT and MRI with emphasis on individual anatomic spinal structures. AJR Am J Roentgenol 2009; 192: 987-995